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1. INTRODUCTION

i

This is the final report on National Aeronautics and Space Administration contract number
NAS8-30639 to study the effects on image quality of scattering due to irregularities in the optical
surfaces of the Large Space Telescope (LST). The objective of the study is to build a complete
model for the point spread function (PSF) of an astronomical telescope, one which is complete
enough to show the manner in which figure error, ripple, and surface microstructure in the optical
surfaces degrade image quality. The underlying purposes are to develop tools for use in analyz-
ing how well the surfaces of the primary and secondary mirrors of the LST should be finished to
assure adequate performance in the visible and ultraviolet wavelength ranges, and to evaluate the
relative importance of figure error, ripple, and surface microstructure in degrading image quality,

Image quality requirements for the LST are more stringent than those of any earlier tele-
scope. The absence of any intervening atmosphere means that the PSF will be defined by factors
internal to the telescope, including aberrations, manufacturing errors in the optical surfaces, and
pointing stability, rather than atmospheric turbulence. The absence of any intervening atmosphere
also allows operation at wavelengths down to perhaps 100 nanometers, which makes it more de-
sirable to minimize optical surface irregularities, due to their more critical effect at the shorter
wavelengths. The very large aperture diameter of the LST primary mirror makes it difficult
and very costly to achieve the nearly ideal surface finish desired to obtain the highest level of per-
formance at the shortest wavelengths involved. It is therefore important to have a means of model-
ing the telescope’s image quality in the presence of mirror surface irregularities, so that quanti-
tative estimates can be made of the degree to which a given amount and type of mirror surface
irregularity will reduce image quality.

There is a considerable body of data as to the relationship between image quality and optical
surface figure error, Most of this data has been developed for application to aerial reconnais-
sance and related areas of imagery, where the objects are of low contrast, and the desire is to
resolve fine detail in a continuous tone image. In recent years, there have also been a number of
studies on the influence of surface microstructure on scattering at angles greater than 1 degree,
largely as a result of developments in the fields of high energy lasers and laser communication
systems. But there has been very little study of ripple or surface irregularities of characteris-
tic lateral dimensions between those of figure error and microstructure. These affect the point
spread function and scattering at angles between a few Airy radii and 1 degree, a region of inter-
est to astronomers. A more complete evaluation of the effects of ripple will be the principal
focus of this study. We will build a model for the PSF which includes quantitative estimates of
the degradation due to ripple, based on presently available data.

Fig. 1-1 represents our knowledge of the complete point spread function, as of the early
stages of this study, scaled to a 3.0-meter aperture diameter, The perfect lens diffraction pat-
tern and its envelope are well known, with the envelope being an inverse cubic function of its
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radius. Rnowledpe®¥degradations in the PSE is confined to two extremes. At the inner extreme,
the diffraction pattern for degraded lenses can be calculated out to a few Airy radii before the
accuracy limitations of the two-dimensional Fourier transform routines involved are reached,
[The programs involved use a wavefront (real or modeled) as an input, but define it with a grid

of sample points too widely spaced to show the effects of anything except figure error.] At the
outer extreme, scattering from mirror samples has been measured at angles greater than 1
degree, as represented by the three curves in the lower right corner of the figure. The only
measured data between these two extremes of which we are aware are the two star profiles of
King and Kormendy. It is difficult to evaluate their applicability to the LST, since they were
measured from silver halide photographs taken with ground based telescopes.

In this study, we pursue two paths to fill in the gap between 10 Airy radii and 1 degree.
The first, to which we devote the major effort, is to develop an improved computer program
capable of calculating the PSF out to 300 Airy radii or more, using a rotationally symmetric
wavefront containing very fine irregularities. The second is to develop a wide angle scatter func-
tion model which will permit extrapolation of data measured at angles greater than 1 degree in to
angles of a few arc-seconds. We will attempt to justify these models on the basis of data avail-
able from the literature and data obtained from other workers in the field. (In this latter regard,
we have been particularly fortunate in obtaining high resolution measurements of surface irregu-
larities in the 154-inch primary mirror for the Anglo-Australian Telescope.) We will also
recommend measurements where we feel the present data gives insufficient backing to the model.

The text of this report is divided into seven sections, including this introduction. Section 2
summarizes the report and gives conclusions, Section 3 reproduces the technical portion of the
statement of work. Sections 4, 5, and 6 correspond roughly to phases Ia, Ic, and Ib, respectively,
of the statement of work. Section 7 corresponds to phase II, part 2 of the statement of work. Re-
sults of the data survey of phase II, part 1 have been incorporated into the other sections, where
pertinent. Two of the more significant reports gathered in that survey are included as appendices
A and B.

Section 4 discusses the ripple analysis. The core of this analysis is a computer program
for computing the point spread function for a rotationally symmetric wavefront defined by 512
points spread along a radius. This was developed from an existing Itek program, which was modi-
fied to increase its accuracy, and to allow modeling of a wide variety of wavefront error patterns.
It allows computation of the PSF out to about 300 Airy radii, or 16 arc-seconds for the 3-meter
LST at its test wavelength. Section 4 presents a basic discussion of image formation in the pres-
ence of ripple as a foundation for our discussion of scattering by wavefront irregularities. These
results are used in examining the effects of random wavefront error on the PSF, and in analyzing
statistical models for image degradation based on wavefront autocollimation models. The com-
puter program is used in an extensive analysis of ripple in the 154-inch (3.91-meter) aperture
primary mirror for the Anglo-Australian Telescope. From the latter data and the study of ran-
dom wavefronts, we build a model wavefront for the LST. We also use a separate computer pro-
gram to look at the specific problem of the corrugated, or “waffle” wavefront error which can
arise from the cellular structure of the lightweighted mirror structure.

Section 5 describes the wide angle scatter analysis. It opens with a brief description of
the most common model presently used to describe scattering by random surface irregularities.
Recent mirror scatter measurements are used to demonstrate that this model is not applicable to
scattering from optical surfaces. An empirical model for mirror scatter is developed, based on
results from the University of Arizona. This is then compared to results from other experi-
ments, and its wavelength scaling properties are defined on the basis of the phase grating diffrac-
tion theory described in Section 4. This scatter function model is used in developing a star pro-
file model. The latter is used in turn in a computer program for calculating the effective back-
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ground radiance contribution from starlight scatter'ed from the primary mirror of the telescope.
Results computed with the latter are discussed.

Section 6 discusses the effects of mirror surface coatings on scatter from the mirrors.
This section is brief, since there is little quantitative data to indicate that there is any significant
effect, except in portions of the ultraviolet where surface plasmon coupling occurs, There is
insufficient data to evaluate the plasmon effects, but studies currently in progress will produce

new data in 1975,

Section 7 gives some recommendations for future experimental programs to measure
scattering and surface irregularities. Scattering measurements are discussed in terms of two
specific measurement techniques we feel are worth pursuing. Surface irregularity measurements
are discussed in terms of the type of data required, since a number of possible measurements
are possible, and no one technique can measure the entire range of data required.

The two computer programs developed during this study are described in operating manuals
submitted separately. Brief descriptions are included in Sections 4.1 and 5.5.2.
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2. SUMMARY AND CONCLUSIONS

This section of the report summarizes the main text of the report, and gives the conclusions
drawn from the study. The material is presented in roughly the same order as in the main text.
Where a figure or table will aid in summarizing, it will be identified by number, rather than be
reproduced. )

2.1 RIPPLE ANALYSIS

The computer program GASPR is a modified form of an existing Itek program for computing
PSF’s from specific, rotationally symmetric wavefronts. The accuracy of the program was in-
creased by changing from a 96- to a 512-point Gaussian quadrature in solving the Hankle trans-
form. It is capable of computing the PSF out to more than 300 Airy radii. Input options were ex-
panded to include 3rd, 5th, and 7Tth order spherical aberration, defocus and a central obstruction,
the original options, plus random wavefront error, sums of cosine phase gratings, sums of zonal
ridges and Gaussian apodization, The exact forms are defined by Eqs. 3 through 10. Arbitrary
(or real) wavefronts can be input by defining OPD values at evenly spaced radii. Outputs include
the PST and encircled energy plots of the original program, plus effective radiance, MTF, MTF
degradation function, and * Autocorrelationt function plots. Accuracy of the PSF is within round-
off error for a perfect lens. Accuracy of the other outputs depends on the radius increment and
truncation radius used in defining the PSF (see Table 4-1 and Figs. 4-4 and 4-5). A program

listing and writeup have been supplied to the customer separately.

Any wavefront can be represented as a spectrum of cosine phase gratings of different spatial

frequency, phase amplitude, phase angle, and orientation. In principle, the diffraction from such

a wavefront can be represented as the summgti'bri of the diffracted wavefronts produced by the
component phase gratings. In practice, interactions between phase gratings of different spatial
frequency and the higher order sidebands of single spatial frequency components make this very
difficult unless the phase amplitudes of the various components are very small, less than about
0.04 wavelength. The presence of figure error or a central obstruction will spread out energy

in the phase grating sidebands even at those low levels of wavefront error. These effects are
demonstrated by a series of examples using rotationally symmetric phase gratings, which may

be found in Section 4.2,

The interactions mentioned above make it difficult to build a simple model for scattering
based on a one-to-one correspondence between a spectrum of cosine phase gratings and the
scatter function. However, this type of model makes it possible to draw two conclusions which

1 An asterisk is used in “* Autocorrelation function” to indicate that this is an approxima-
tion to the true wavefront autocorrelation function, as discussed in connection with Eq. 14, in
Section 4.1.2,

2-1



are very useful in scaling scatter function with wavelength, when the individual spatial frequency
components have small phase amplitudes, First, the scatter angle « is related to the spatial
frequency component of period d by the grating equation sin a = A/d. Thus, changing the wave-
length will change the angle at which the light is scattered such that

Sin 0y = ().2/7\1) sin al

The energy diffracted by the spatial frequency component is proportional to the square of the
phase amplitude, and thus is proportional to (xy/7y)%. The solid angle into which the light is
scattered is proportional to (a,/ a;)?. Therefore, the relative intensity scales as

ag, A,) = (A/29) I(aq, Xy)

The above conclusion has important consequences in defining a scatter function model, as
is discussed in Sections 2.4.2 and 5.3, Among the most interesting experimental consequences is
the implication that scatter measurements made at, say, 1 degree with 10.6-micrometer radia-
tion can be scaled to give visible light scattering at a few arc-minutes (see Fig. 5-14 for an ex-

ample).

The random wavefront model was used to investigate the relative effects on the PSF of
three wavefronts having the same net rms wavefront error and different correlation lengths, i.e.,
a different balance between figure error and ripple. The more significant results are shown in
Table 4-6, Fig. 4-27 (PSF’s and encircled energies) and Fig. 4-28 (MTF’s). Neither Strehl
definition nor high spatial frequency MTF (which determines continuous tone resolution limits)
are strongly affected by the shift in spatial frequency content. Encircled energy and the PSF are
very strongly degraded by the increase in high spatial frequency content (ripple). Thus reducing
ripple to a minimum is important for experiments requiring the diameter containing a given

encircled energy to be minimized.

A substantial amount of data has been provided to us by Grubb Parsons concerning the
surface quality of the 154-inch (3.91-meter) aperture primary mirror for the Anglo-Australian
Telescope. This consists of 20 radius profiles taken at 1-inch inerements., An extensive analy-
sis has been performed on this data, and is presented in Section 4.7. This includes some coarse
resolution two-dimensional analyses, plus use of individual radius profiles to define rotationally
symmetric wavefronts for use in GASPR. We have performed spatial frequency analyses of two
profiles and compared the resulting amplitude density functions to displaced energy functions
(in effect, scatter functions) computed from GASPR outputs (Figs. 4-56 through 4-59). The wave-
front error data has also been scaled to give performance at 325 and 121.5 nanometers in the

ultraviolet.

A number of observations can be drawn from the data on the A.A.T. primary, First, there
is a considerable amount of ripple in the mirror with periods on the order of a few inches, in
spite of the fact that the final polishing was done with a full aperture flexible lap. Second, there
is a net truly rotational component to the wavefront error, as determined by zonal averaging,
and some visual evidence that there may be somewhat higher elliptical ridges. (None of these
ridges seem to remain intact around the entire circumference, however.) Third, the Fourier
transforms of individual profiles show evidence of peaks in the spatial frequency spectrum.

The two profiles selected for closest study were radius 5A, chosen for its large high spatial
frequency component and lack of low spatial frequency irregularities, and radius 9, chosen for a
good mix of high and low spatial frequency components. Examination of the amplitude spectra
and displaced energy functions for these two cases illustrates a point made above: when only high
spatial frequency components of low phase amplitude are present, there is a fairly close one-to-
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one correspondence between features of the scatter function and the spatial frequency spectrum
of the wavefront irregularities, (Compare Figs. 4-56 and 4-57 for radius 5A.) When large phase
amplitude, low spatial frequency components are present, this relationship tends to break down,
due to interactions between components. (Compare Figs. 4-58 and 4-59 for radius 9.)

PSF and MTF data for the ultraviolet wavelengths show how much image quality degradation
results from the figure error and ripple in this mirror. (It was never intended to operate at
those wavelengths, nor in turbulence-free outer space.) This gives some indication of what might
be expected from the LST, except in that the A,A.T. primary, with a wavefront error of 0,12
wavelength rms at 578 nanometers, has about twice the wavefront error that is expected for the
complete LST, which is to have a wavefront error of 0.06 wave rms at 633 nanometers. (Some
consideration is being given to relaxing that tolerance.)

To simulate the LST performance, we have taken an analytic model of the zonally averaged
wavefront for the A.A.T. telescope, added a higher spatial frequency random component, to simu-
late surface roughness, and scaled the rms wavefront error to match the projected values at
632.8, 325, and 121.5 nanometers. The results are given in Section 4.8. These represent the best
performance model for the LST which can be generated at present, based on the original perfor-
mance specifications. Data is presented for both the 3.0- and 2.4-meter aperture diameters
currently being considered (see Figs. 4-62 through 4-68).

Three additional tasks were performed as part of the ripple analysis. The first of these
tasks was a study of the effects of apodization in the presence of wavefront error. This is fre-
quently recommended as a technique for improving image quality, and it works well when no
aberrations are present (Fig. 4-33). But apodization affects only the pupil diffraction, and does
not reduce diffraction due to wavefront error at all (Fig. 4-3 4). Apodization may prove a valuable
technique for suppressing the diffraction pattern and bringing out the scatter function when mea-
suring the latter at very small scatter angles. We recommend its incorporation into the scatter
experiment discussed in Section 7.

The second added task was to examine the effects of a waffle-like surface deformation pat-
tern in the primary mirror which might result from elastic deformation of the front plate of the
lightweighted mirror during polishing or due to gravity release. In effect, this would emboss the
square or hexagonal structure of the mirror substrate core on the reflecting surface of the mir-
ror. The results of the study are shown in Fig. 4-37 and Tables 4-8 and 4-9. The values quoted
for the LST in Table 4-9 are based on a very simple model for the surface deformations, and may
therefore be pessimistic, In monochromatic light, the image defects take the form of a set of
eight false star images set in a square centered on the main image. (In white light, they will form
eight spectra extending radially outward from the central image.) The monochromatic images
will be substantially brighter than the diffraction pattern ring structure, and may reach to within
6 to 10 stellar magnitudes of the central image, depending on the wavelength, Clearly, this is a
problem which should be given more detailed consideration. :

Finally, we looked at statistical models for the effects of ripple. This investigation was
confined largely to examining the validity of earlier statistical models based on a Gaussian auto-
correlation function., Our study indicates that the Gaussian model for the autocorrelation function
is faulty on formal mathematical grounds, and a very poor approximation for real mirrors from
a practical point of view. Practically speaking, the surface irregularities of a real mirror cover
too large a spatial frequency range to be well represented by a Gaussian autocorrelation function,
We were not able to define a more suitable model in the time we could devote to this topic. That
will have to wait for a future effort.

2.2 WIDE ANGLE SCATTER ANALYSIS

This study opened with an examination of the Beckmann model for scattering by random
surface irregularities, based on the Gaussian autocorrelation function (see Fig. 5-1). The Beck-
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mann model has to be rejected for the reasons cited in the section above: the surface irregulari-
ties contain too broad a range of spatial frequencies to be represented by a Gaussian autocorrela-
tion function. The star profiles of King and Kormendy (Figs. 5-2 and 5-3) and the scatter mea-
surements of the University of Arizona (Fig. 5-4) indicate that the real scatter function will have
a very long straight section (in log-log plots), which is incompatible with Gaussian theory. Auto-
correlation measurements by Michelson Laboratory confirm that the autocorrelation function is
non-Gaussian (Figs. 5-5 and 5-7).

We have generated an empirical model for the scatter function based on these observations.
This model assumes the scatter function to have a fixed slope over most angles—that is, scatter
is proportional to the (angle)~S, where s is a constant. The final form of the scatter function is
shown by Eq. 70 and Figs. 5-12 and 5-13, It includes provision for wavelength scaling of the type
discussed above. As a test of the model, we have scaled scatter data measured at 10.6 micro-
meters to 515 nanometers for comparison to University of Arizona data (see Fig. 5-14). The
results appear to be compatible with each other and with the model.

This scatter model has been applied to image illumination calculations for a Cassegrain
telescope to examine how the scatter functions of mirrors add. The results indicate that the form
of addition is a function of the slope of the scatter function and the axial beam diameters of the
mirrors involved, If s = 2.0, the scatter functions may be added directly, with only a correction
factor for the specular reflectivity of mirrors further along the train of optics. That is, if there
are n mirrors of specular reflectivity p, and the slope s = 2.0, then the total scatter coefficient
will equal npn-! times the scatter coefficient of a single mirror,

This scatter function, with s = 2.0, has been used to generate an equation for the star pro-
file, including the effects of diffraction., The result, Eq. 96, has been used to match the inverse
square curve of King (see Fig. 5-16). The indicated scatter coefficient pg(ay, ;) = 0.085 is
large, when compared to Arizona data at the same angle and wavelength (sin p, = 0,10, X, =
514.5 nm), King and Kormendy’s data is for a telescope with five optical surfaces. When this is
considered, the results make the King and Kormendy star profiles appear fully compatible with
mirror scattering at angles above 10 to 20 arc-seconds.

The MISCAT computer program was developed using the above star profile model, with
adaptations to account for off-axis vignetting in the telescope tube, to calculate the contributions
of field stars to the effective background radiance through scattering from the primary mirror,
The model used for the computation sets up a rectangular grid of star profiles based on stellar
population statistics, with each star profile weighted by a vignetting factor which is a function of
their angle off the axis of the telescope., Where each star profile intersects the axis of the tele-
scope, its relative intensity is added to that of all the other stars, The process is repeated for
all the stellar populations at each magnitude included in the run. The total sum gives the effec-
tive background radiance contributed by the stars in the portion of the sky whose population
statistics have been used.

This program was used with stellar population statistics for the galactic equator (see
Table 5-5), telescope parameters appropriate for the LST, and a varlety of scatter coefficients.
The results are shown in Tables 5-6 through 5-8. This data indicates that telescope tube length
will have no appreciable effect on the background radiance contribution due to scattered starlight,
but that both the scatter coefficient and the wavelength will have an effect. In evaluating these
results, keep in mind that the darkest sky background expected in the visible spectrum is on the
order of 23,5 magnitudes per arc-second squared. The only data point that matches or exceeds
this value is for a wavelength of 121.5 nanometers and a scatter coefficient of 0.1. The latter is
much larger than is expected for the LST, at least with clean mirrors. We conclude from these
results that scattered starlight can be kept to tolerable levels without superpolishing the mirror,
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for the worst possible star backgrounds. For this feason, we have not made calculations for the
galactic poles, as called out in the statement of work.

2.3 EFFECTS OF MIRROR SURFACE COATINGS

There is insufficient data to specify the effects of surface coatings on the scatter function
quantitatively, and we therefore could not include them in the scatter function model. Qualitatively,
it is the feeling of workers in the field that the effects are negligible, where the only coatings are
the aluminum reflective layer and a protective coating of MgF,. There may be an exception to
this at wavelengths in the ultraviolet where surface plasmon effects cause absorption and re-
emission of some light. It has been demonstrated that roughening the optical surface will increase
the efficiency of plasmon coupling (see Fig. 6-1), This surface was roughened by crystallization
in an undercoating, however, and this is not considered representative of the roughness charac-
teristics of polished optical surfaces. Current thinking is that the problem is less severe than
implied by Fig. 6-1, but again, there is insufficient quantitative data. Michelson Laboratory is
involved in an experimental program to measure ultraviolet scattering from aluminized mirrors,
and better answers should be available in the near future.

2.4 FUTURE EXPERIMENTAL MEASUREMENTS PROGRAM

The wide angle scatter function model discussed above is based on a linear extrapolation
of scatter measurements made at angles greater than 1 degree. This extrapolation involves an
assumption as to the nature and size of surface irregularities in the ripple domain, and there is
no concrete proof that this assumption is correct. It is important that scatter measurements be
made at angles within the range of 1 arc-second to 1 degree to confirm or refute the validity of
the scatter function model. It is also importarit to make direct measurements of the mirror sur-
face irregularities associated with scatter at these angles to better understand the scatter mech-
anism,

Only two techniques seem to offer the hope of adequate scatter measurements, One is the
center of curvature scatter measurements experiment described in Section 7.1.1. Coupling this
with the illumination apodization technique described in Section 4.5 should make it possible to
measure scattering successfully down to angles of a few Airy disk diameters. The second tech-
nique is to make measurements at a number of wavelengths from the same sample, and scale
them to the shortest measured wavelength by the technique described above. This would not only
serve to give narrow angle measurements of scattering at short wavelengths, but would also serve
to check the validity of the scatter function model, and to check for instrumentation errors in
regions where the scaled scatter functions overlap.

A variety of experimental techniques can be useful in measuring surface irregularities, but
no one will cover the range of measurements we think is required. To cover all scales of surface
irregularities which can effect scattering in the visible and ultraviolet requires measurements
with lateral resolutions ranging from tens of centimeters to fractions of a micrometer. We have
three recommendations tied to what should be measured and not how to measure it, First, data
is lacking at lateral resolutions ranging from tens of centimeters to millimeters on LST-size
mirrors. This lack should be remedied, Second, the surface irregularity measurements should
be Fourier transformed, to give as amplitude spectrum or power spectrum of the surface irregu-
larities. This is needed to relate the surface measurements to the angles at which light is
scattered. Third, when rms deviation measurements are made for surface irregularities which
are to be compared to measured scatter functions, care should be taken that the spatial frequency
bandpass used in the rms summation correspond to the range of angles over which the scatter

measurements are made.
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2.5 GENERAL CONCLUSIONS

This study has produced no startling new revelations concerning scattering and the require-
ments for a smooth surface on the mirrors in the LST, nor were any such revelations expected.
In general, the study has given a better understanding of scattering at small angles and how
scattering relates to irregularities on the mirror surfaces. The principal purposes of the pro-
gram were to develop analytical models for scattering due to ripple and microstructure, and to
indicate directions for future experimental work, if any is needed. In this, the study has been
successful. Beyond this, several general conclusions can be stated concerning ripple effects and

wide angle scattering.

We have shown ripple to be a significant problem where there is a need to minimize the
diameter containing, say, 95 to 98 percent of the light in the image of a point source. Ripple
which will degrade an image in this respect may not significantly degrade the peak intensity of
the image. Ripple of significant magnitude can be present even when the mirror is polished with
a full aperture, flexible lap of a type we would expect to reduce ripple. These levels of ripple
will not be detected by the usual interferometric tests for figure error. We therefore feel that
more attention should be devoted to developing techniques for measuring ripple quantitatively, and
for controlling ripple in the fabrication process.

Wide angle scattering, as far as it contributes to the effective background radiance through
scattering of light from field stars, appears to be less of a problem than previously thought. If
our model for the scatter function is correct, then scattering of the light from field stars by the
primary mirror should be no problem with a normally finished mirror. This conclusion should
be qualified in three aspects, however. First, the scatter function model upon which this conclu-
sion is based involves an extrapolation of existing data which should be confirmed by experimental
measurements. Second, the effects of surface plasmon coupling on scattering in the ultraviolet
is still largely unknown, and may have a bearing on whether or not a superpolished surface is
needed. Third, insufficient attention has been given to scattering from surface contaminants, and
some measurements of such scattering should be made with whatever apparatus is used to con-
firm the nature of small angle scattering.
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3. STATEMENT OF WORK

This statement of work is abstracted from the request for proposal, and describes only the
technical work to be performed. Discussion of details of the procedures for reporting results
has been omitted.

3.1 BACKGROUND

With the near diffraction limited, very narrow angular images that are to be achieved in
the LST, it has become increasingly important to determine what effects scattered light from
optical surfaces will have on the ultimate performance of the LST for various types of astronomi-
cal observations. The purpose of this study is to develop an analytical model of the optical per-
formance of a telescope, such as LST, in the presence of scattered light and to determine a
meaningful measurements program to establish credibility of the analytical model in order to
determine what performance can be expected for the LST and what specifications must be placed

on the LST optics.

3.2 SCOPE OF WORK

The contractor will supply the necessary manpower and resources to accomplish a study
on ultraviolet and visible scattered light effects on the optical performance of the LST. The study
will be divided into two phases. The Phase I effort will be to develop an analytical model to de-
scribe the effects of optical surface scatter on the point spread function (PSF) and the modulation
transfer function (MTF) of the LST OTA optics. The Phase II effort will be aimed at verification
of the analytical model. This effort will consist of two parts. First, a survey will be made to
obtain pertinent experimental data on existing telescope optics in an attempt to establish credibil-
ity with the developed analytical model. The second part will be to determine and recommend an
experimental measurements program that needs to be performed in order to obtain optical surface
scatter data that is needed to completely establish credibility in the analytical model. Details of
the tasks to be covered in Phases I and II are described below.

Phase I—Development of Analytical Model

The contractor will develop an analytical model that will predict both the PSF and MTF for
optical surfaces that produce both wavefront errors and scattered light. While limited analytical
models already exist, the purpose of this study will be to carry the analysis much further to in-
clude the following points: N

a. The effect of both surface finish (:smoothness) and mirror figure must be considered.
The high spatial frequency components of the surface amplitude function will affect the near angle

(less than 1 arc-second) scatter thus degrading the PSF and MTF. The analytical model should
include the effects of all spatial frequencies in the optical surface. Interferometric mirror figure

3-1



measurements are in effect low spatial frequency band-pass filters and thus in no way record
what type scatter is present due to high spatial frequencies in the optical surface. One problem
to be addressed in the LST program is how to specify both surface smoothness and wavefront
error, At what point does it cease to make sense to reduce the mirror figure error because the
surface finish dominates the shape of the PSF? Or what PSF or MTF can one expect for a mir-
ror with a given figure error and surface finish?

In addition, the analysis must consider the combined effect and individual contributions of
all optical elements in the LST (OTA).

b. The effects of an overcoating of aluminum plus MgF, or LiF on the surface finish and
thus optical image performance will be included in the analytical model.

c. The effects of wide angle scattering by field stars on producing an artificial background
sky brightness will be considered, This should be done using actual star counts for two regions
of the celestial sphere (the galactic poles and the galactic center) and over the entire spectral
regime that LST will be used (900 nm to 1 mm) at a sufficient number of wavelengths to describe
the system characteristics.

Phase II—Verification of the Analytical Model

Part 1. A survey will be made to obtain all available data pertinent to this probelm, Em-
phasis in this task will be placed on establishing credibility in the analyhcal model and predicting
the LST performance with today’s state of the art.

Part 2. Based on the analysis and survey of available data, the contractor shall determine
and recommend an experimental measurements program that should be conducted to obtain all the
data necessary to allow NASA to predict with confidence the optical performance of the LST. The
performance of the measurements program will not be a part of this study.
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4, RIPPLE ANALYSIS

“Ripple” refers to optical surface irregularities having characteristic lateral dimensions
in the range between those of figure error and surface microstructure. There are no sharp
boundaries between figure error, ripple, and surface microstructure. In fact, the three cate-
gories of surface irregularities exist largely as conversational conveniences, since they all de-
grade the image through the same diffraction process. The three categories arise from differ-
ences in the test procedures used to measure each, and the fact that the characteristic lateral
dimensions of optical surface irregularities determine the “scatter” angle at which light is dif-
fracted. Of more significance for this study, the mathematical techniques used to analyze diffrac-
tion by surface irregularities depend on their characteristic lateral dimensions.

Figure error is usually measured interferometrically, and is usually specified completely,
including its variation in two dimensions. Typically, the two-dimensional wavefront is represented
by a 20- by 20-point square grid in data reduction and in calculating the resultant modulation
transfer function (MTF) and point spread function (PSF). In special cases, a much larger grid
can be used (see Section 4.6). But this can be done only if fast Fourier transform techniques are
used in calculating the MTF and PSF. ‘These techniques reduce the accuracy of the calculations
somewhat, and place restrictions on the sampling intervals used in defining the MTF and PSF.
While these limitations are completely acceptable in defining the MTF, they do not allow adequate
quantitative determination of the effects of higher spatial frequency ripple on the PSF.

For our purposes, we consider figure error to include those surface irregularities with
spatial frequencies up to about 5 cycles per pupil radius, the limitation set by a 20- by 20-point
sample grid. This study considers figure error only in a few specific cases.

Surface microstructure is too fine-scale for deterministic analysis, and must be treated
statistically. It is the source of wide angle scattering, and will be treated in Section 5. For the
present, we note only that the characteristic lateral dimensions of microstructure range from
less than 1 wavelength to perhaps 1 millimeter,

The characteristic lateral dimensions associated with ripple, then, range from 1 millimeter
up to, in the case of the LST, about 30 centimeters. The number of sample points required to
define ripple adequately in two dimensions, and the number of calculations required to convert
this data into a PSF at the desired level of accuracy, makes two-dimensional ripple analysis un-
attainable. In general, therefore, we will examine only rotationally symmetric ripple. This
allows the two-dimensional Fourier transform to be reduced to a one-dimensional Hankel trans-
form, making accurate calculations of the PSF possible in a fraction of the time required for com-
parable two-dimensional PSF’s. These rotationally symmetric wavefronts are not identical to
what will be found in real telescopes, but they do allow examination of the magnitude of the image

degradation caused by high spatial frequency ripple

The analysis of ripple will be deterministic, rather than statlstical that is, specific wave-
fronts will be analyzed rather than statistical models. These may be analytic, defined by equa-
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tions, or random, defined with the aid of a random number generator. All will be rotationally
symmetric except for a special case in Section 4.6,

Section 4.1 gives description of the programs used in the ripple analysis. Sections 4.2
through 4.5 will discuss the rotationally symmetric waveforms analyzed, and will rely heavily
on output plots from the computer program GASPR. Section 4.6 discusses one specific two-
dimensional waveform, the “waffle” wavefront resulting from a square-celled lightweighted mir-
ror substrate. Section 4.7 gives an extensive analysis of the 154-inch diameter primary mirror
built for the Anglo-Australian Telescope. Section 4.8 describes a model for the LST wavefront,
based on the types of surface irregularities encountered in the 154-inch mirror, scaled to the
rms wavefront error values currently expected for the LST. Section 4.9 closes the deterministic
analysis with conclusions drawn from the above, and a discussion of the validity of various models

for the autocorrelation function.

Please note that in the following sections all values pertaining to the heights of surface
irregularities refer to the heights on the wavefront, unless otherwise specified. These are, of
course, twice the height of the corresponding mirror surface irregularities.

Also note that a set of perfect lens PSF curves is included in Appendix C in the form of
overlay transparencies. These may be superimposed on the PSF plots in Section 4 to show
differences between the perfect and modified PSF’s under discussion.

4.1 COMPUTER PROGRAMS

Fig. 4-1 is a flow chart representing the basic computational techniques used ina number
of Itek computer programs for calculating MTF’s and PSF’s. The core of the computation routine
is represented by the four boxes at the bottom of the flow chart, showing the relationships be-,
tween the complex pupil function, the complex amplitude image, the point spread function, and the
optical transfer function. It should be noted that this is a very generalized chart, and that the
detailed computation routines used in different programs are quite different, and not necessarily

interchangeable.

The various programs can be divided into two classes, deterministic and statistical. The
one statistical program we use currently is PORO, which uses an MTF degradation function of

the form
T, = o~ {07 [ - Sutn)l} (1)

to define the image degradation due to a statistical wavefront error of w wavelengths rms, Here
vy, is the normalized spatial frequency, and &,, is the autocorrelation function model for the wave-

front. Currently, a Gaussian autocorrelation function of the form

®y(m) = o~(2Ng"u) (2)

is used, where Ny is the reciprocal of the autocorrelation length for the wavefront, This program
was used in connection with the discussion of autocorrelation functions in Section 4.9.

All of the deterministic programs available at Itek start with a specific wavefront deforma-
tion map, convert this into a complex pupil function, and compute the OTF (or MTF) and PSF
from that. The programs differ in the form and source of the wavefront deformation map, FRED
and FITSCAN use interferograms from real wavefronts to compute the wavefront deformation
maps. FRAP-2D uses third order aberrations and a random number generator to produce a two-

dimensional synthetic wavefront deformation mép. GASP generates a rotationally symmetric
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wavefront map using rotationally symmetric third, fifth, and seventh order aberrations. The two-
dimensional programs are used to a limited extent in connection with Sections 4.6, 4.7, and 4.9

of this report. The main computer program used in this study is GASPR, revised version of
GASP, having increased accuracy and a substantially larger number of input and output options.

GASP and GASPR both use Hankel transforms (Fourier-Bessel transforms) to compute the
PSF from the rotationally symmetric complex pupil function. GASP uses 96-point Gaussian
quadrature for the Fourier integration, with the wavefront being defined by 96 points along one
pupil radius. With GASP, the PSF can be computed out to about 46 Airy radii. Beyond that, spuri-
ous oscillations are produced, due to the limited number of sampling points. In GASPR, the num-
ber of sample points was increased to 512, to extend the range over which an accurate PSF can be
calculated. Linear extrapolation from the 96-point case led us to expect the limit on radius to be
about 250 Airy radii, but in fact useful results can be obtained to at least 300 Airy radii. The ulti-

mate limit has not been determined.

GASPR was created for this study program, and a complete description will be provided
separately. A description of its input and output options will be given here, along with some dis-
cussion as to its accuracy, for the benefit of readers who only wish to know enough to interpret
the results presented in the next few sections of the report,

4,1,1 Input Options

The user of GASPR may define the form of the wavefront he wishes to analyze through the
choice of a number of input options, They are as follows:

1. Central obstruction—A circular central obscuration may be included, defined by its
normalized diameter €,

2. Seidel aberrations—3rd, 5th, and Tth order spherical aberration and defocus may be
included. (The nonrotationally symmetric Seidel aberrations are, of course, excluded.) These
aberrations are specified in terms of the optical path difference (OPD) at the edge of the pupil.

3. Analytic OPD functions—Two basic OPD functions have been added, the cosine phase
grating Cji and the Gaussian cross section ridge Gj:

C; = aj cos (2mbjp + &) (3)
and

Gj

hj exp [~(0 = poj)*/Wj’] : (4)

where a; = phase amplitude (OPD amplitude) in wavelengths
bj = spatial frequency in cycles per pupil radius
¢; = phase angle in radians
p = normalized pupil radius
Poj = normalized pupil radius at which Gj reaches maximum
h; = phase height (OPD height) of ridge in wavelengths, and

]
wj = half-width at which Gj = hj/ e.

G can also be used to generate edge roll-off by setting p, to a value greater than 1.0, and select-
ing w and h appropriately.

More complex analytic OPD functions can be generated by using combinations of C;j and Gj.
The possible combinations available are defined by Eq. 5:
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0 m,n
OPD(p) = 2 EGk X_E(Ci + Gj) (5)
k=1

=1 i=1
=1

The maximum value for m,n, and 0 is 10, and for p is 8.

4. “Random” wavefront— Values of OPD along a radius are defined with the aid of a random
number generator and one of four smoothing functions. The user defines the wavefront in terms
of its rms wavefront error w, the correlation width c, the type of smoothing function (Gaussian,
square, triangular, or linear exponential), and the seed. The seed isa number determining where
in the random number table the generation process begins. It permits the same wavefront to be
regenerated exactly. The smoothing functions are of the form

Gaussian Sg(r) = exp [-1%/(c/2)’] (6)
Square Sg(r) =((1): r= zfg) (7
Triangular Se(r) = ((1)"' Iri/e, L z) (8)
Linear exponential S¢(r) = exp [-1r1/(c/2)] (9)

The random numbers are generatécizgﬁiﬁélly spaced increments of 0.006 in normalized
radius units, and smoothed with the above functions. A parabolic interpolation routine is then used
to define the OPD at the 512 unevenly spaced points used in the Gaussian quadrature integration

technique,
5. Measured wavefront profile—Any set of measured data (or an arbitrarily chosen set of

numbers) can be entered at equally spaced radius increments. A parabolic interpolation routine
will be used to determine the values of this wavefront at the 512 sample points, as described

above.

6. Apodization—One apodization function is available. This defines a pupil transmittance
function A, in which the effective transmittance falls off as a Gaussian function of the pupil radius

p:
A(p) = exp (-kp?) (10)
where p(1/e) = k™17

7. Any combination of input options 1 through 6 may be used, except that a random wavefront
cannot be used at the same time as a measured wavefront.

4.1,2 Output Options

GASPR computes the PSF from the specified wavefront, using a Hankel transform. In turn,
a Hankel transform of this PSF is used to generate the MTF. A series of other outputs, both
printed and plotted, is available:

1. OPD—The input waveform may be plotted, showing OPD as a function of the normalized
pupil radius. No printout of this function is available. (The rms wavefront error w is always
printed out.)
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2, PSF—Two forms of the point spread function are available. In one, log;, of the relative
intensity is plotted as a function of the image radius, specified in Airy radii units (one Airy
radius = 1.22 3/Dp, where Dp is the entrance pupil diameter). In the other, the effective object
radiance in magnitudes per square arc-second is plotted as a function of radius in arc-seconds,
These two outputs are available both as plots and as printouts,

The normalization technique used for the PSF should be understood. Two steps are involved,
in the case of the log;, relative intensity output. First, the PSF is normalized so that the total
energy in the PSF equals unity, including that part of the PSF beyond the radius at which the output
is truncated. This is equivalent to normalizing the MTF to 1.0 at zero spatial frequency, and is
done to distinguish between changes in effective transmittance and changes in the image spread
when a central obstruction or apodization is present. Second, the PSF is multiplied by a constant
which will make the PSF equal to unity at radius zero when there is no central obstruction and
no wavefront error. Thus the actual value of the relative intensity at radius zero is equal to the
Strehl definition @. For a perfect lens with a central obstruction, @ = (1 ~ €.

For the effective radiance plot, the relative intensity I*(r) is converted to effective radiance
My(r) magnitudes per square arc-second using the equation

My(r) = 26.84 + my - 5 logyy Dp + 5 logyy A=~ 2.5 logy,I*(r) (11)
where my = magnitude of star
Dp = aperture diameter in meters
A = wavelength in meters.

my is normally specified in visual magnitudes, although other types of magnitudes can be used
(see Section 5.5.1 for derivation). Note only that.#y(r) will be in whatever type of units are used
for my. The user must specify my, Dp, and X, The top of the effective radiance scale will be set
to the nearest integer smaller than the value of #v(r) defined by the first five terms of Eq. 11.
I*(r) incorporates the normalization to the Strehl definition. Thus.#(0) should represent the true
peak effective radiance of the stellar image.

The effective radiance plot option is included to allow direct comparison of performance
at different wavelengths. It should be noted that the computation does not take into consideration
variations in spectral type for the star, Thus, for a comparison with a real star, the user must
adjust the value of my at each wavelength appropriately.

3. Encircled energy (EE)—The encircled energy is printed out and plotted every time the
PSF is printed out and plotted. It is calculated by integrating the PSF function after it has been
normalized to unit energy. The encircled energy plot appears on the same graphs as the logy,
relative intensity and effective radiance functions, and can neither be deleted nor plotted separate-
ly. The integration technique used is Simpson’s rule, The accuracy of the results will be dis-
cussed in Section 4.1.3,

4, EE(perf) - EE—This output is available in printout only. This function will be referred
to as the displaced energy, DE(r). A positive value indicates that a fraction DE(r) of the total
energy in the PSF has been displaced outward beyond radius r. A negative value indicates an
inward displacement (as, for example, with an apodized lens). Since the comparison is made to
EE(perf), the encircled energy for a perfect lens with no central obstruction, the energy displace-
ment caused by a central obstruction can also be evaluated,

DE(r) can be used to calculate both where the displaced energy comes from and where it
goes to the function. ADE = DE(r;) — DE(r;), ry < r, indicates the difference in energy content in
the PSF between r; and r, for the test case as compared to the perfect, unobstructed lens, A nega-
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tive value indicates a net loss in energy, and a positive value indicates a net gain, compared to the
perfect case, Although this function is not printed out or plotted, hand calculations will be used
in some of the analysis in subsequent sections.

5. MTF—The modulation transfer function T(v,) is plotted as a function of the normalized
spatial frequency vy = v/v,, where vy = Dp/a cycles per radian, or v, = 1/AF cycles per unit
length, F being the focal ratio. Both plotted and printed outputs are available.

The MTF is calculated by taking a Hankel transform of the PSF function generated above.
Since the PSF is truncated, it does not represent all the energy in the PSF. To minimize the
errors in the MTF due to this truncation, the value of T(0) has been set equal to the encircled
energy at the truncation radius, The magnitude of the residual error is discussed in Section 4.1.3.

6. MTF degradation function T(—The MTF degradation function is calculated by the equa-
tion

Tw(vn) = T(un)/Tr{rn), (12)

where Ty(vy) is the perfect lens MTF given by
2
THvn) = p [arc cos v, — vy sin (arc cos vy)] (13)

When a central obstruction is present, the analytic equation for the MTF of an obscured perfect
lens is substituted for Ty. Both printed and plotted outputs are available. This function will
always be plotted and printed out when the MTF is calculated and printed out, (The plot can be
suppressed.)

7. * Autocorrelation function &,,(1y)—The *Autocorrelation function is computed by invert-
ing Eq. 1. Thus

éu(Vn) =14+ [lnTw(Vh)/(ZTTW)z] (14)

This function is automatically calculated whenever MTF is calculated. Both printout and plot are
provided, but the plot may be suppressed.

Strictly speaking, this function is not the true autocorrelation function for the wavefront,
Eq. 1 was derived for small random wavefront errors having Gaussian height distributions (but
not necessarily a Gaussian autocorrelation function). It does not apply rigorously to any deter-
ministic wavefronts which do not exhibit Gaussian characteristics. Also, for large wavefront
errors, both the MTF and T, can have negative values, indicating spurious resolution; under these
conditions, Eq. 1 is totally inapplicable. Results obtained in this study, however, indicate that
Eq. 1 may have some application to other than Gaussian random wavefronts, when the wavefront
error is small, although &,,(1,) may have a form which cannot be defined analytically with any
great ease. This property allows examination of the properties of the autocorrelation near zero
U, even though mathematical rigor is not maintained, To distinguish it from the true autocorre-
lation function in later discussions, this function is termed the * Autocorrelation function.

8. Zed integral—The zed function is éomputed by the integral

1
Zed =f ®,,(vn) Ty vn) vndmy (15)
0
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It is contended by some that this function should always equal zero, if the mean value of the wave-
front error is zero and ®,(1y) is the true autocorrelation function. (See Section 4.9 for further
discussion.) If true, a very small value for zed may be taken as an indication of the validity of

using the * Autocorrelation function.

Figs. 4-2 and 4-3 show examples of the output plots. Fig. 4-2 shows the array of five plots
which would normally be used for optical analysis. Fig. 4-3 shows the effective radiance function
for the same wavefront, All plots are for a 12-cycle-per-radius cosine waveform of phase ampli-
tude 0.08 wavelength. For the effective radiance plot, my = 0, Dp = 3.0 meters, and A = 325
nanometers.

4.1.3 Accuracy of Computer Programs

The accuracy of the results calculated with GASPR can be evaluated by computing the PSF,
MTF, and encircled energy for a perfect lens with no obstruction and no wavefront error. The
correct answers for these examples can be defined by well-known analytic equations, In fact,
since these functions are built into EE(perf) - EE and T, the encircled energy and MTF accuracy

may be evaluated internally.

Itek has a separate computer program, SPRE, which computes the PSF using an analytic
equation. (It is used to evaluate the effects of central obstructions and annular ring obstructions
on the PSF.) A comparison of results between SPRE and GASPR shows the latter to be accurate
to within 1 in the sixth significant figure, which is essentially round-off error,

Encircled energy is computed from the calculated values for the PSF using a Simpson’s rule
integration. Simpson’s rule requires an odd number of points: e.g., the values of the PSF at
ra =0, 0.1, 0.2, 0.3, and 0.4 are used to calculate EE at radius 0.4, To calculate EE at radius
0.3, in this example, it is necessary to extrapolate between the values calculated by Simpson’s’
rule at rp = 0.2 and 0.4, using a modified integration technique. Thus, the greatest accuracy is
attained at the Simpson’s rule points. The oscillation in accuracy between odd and even points is
most noticeable within the central maximum, where the encircled energy is changing most rapidly.
At the Simpson’s rule points, the accuracy depends on the increment between sample points. Out-
side the central maximum, the accuracy at Simpson’s rule points remains constant at the values
indicated in Table 4-1. The accuracy at non-Simpson’s rule points approaches this level well
outside the central core.

Table 4-1 — Accuracy of the Encircled Energy Function at
Simpson’s Rule Radii for Different PSF Sampling Increments

Radius Increment Error in Perfect Lens EE
0.20 -0.0017
0.10 -0.000093
0.05 -0.0000057

In computing the MTF, there are two forms of error. One is an error at low spatial fre-
quencies due to truncation of the PSF. The other is an error at high spatial frequencies due to
PSF sampling point increments. The magnitude of these errors is shown in Figs. 4-4 and 4-5,
which plot the MTF degradation function T, versus normalized spatial frequency v, for test case
perfect lenses. In Fig, 4-4, both scales have been greatly expanded to show the magnitude of the
error. This graphically illustrates why T(0) should be set equal to the encircled energy at the
truncation radius. Much larger errors are present at high spatial frequencies, due to the finite
sampling increments, as shown in Fig. 4-5,

4-8

L

gl

|

l [} ui ED W

1

I
I

W



11

(!

ok

The errors in the MTF affect the accuracy of both Ty, and &,, fairly strongly, particularly
when the rms wavefront error is small. This may be seen by comparing the MTF degradation and
* Autocorrelation curves in Fig. 4-2 to Fig. 4-5, The sampling increment used was 0.10, and the
high frequency behavior of both T, and &, shows a strong correlation to Fig. 4-5. (It should be
noted that in the case of a rotationally symmetric wavefront error, both of these functions will
have a value of 1.0 at vy, so the rise in value is not due solely to the sampling increment error,)

The positive value of these errors in the MTF will have a particularly strong effect on &y,
when w is very small, As a result, the zed integral will be positive for small wavefront errors.

For large wavefront errors, zed is driven negative. (More about this in Section 4.9.)

In general, most curves shown in this report use a radius increment of 0.1 Airy radii and
truncate the PSF at 100 Airy radii. Truncation at 50 Airy radii is used in a limited number of
cases, Their accuracy may be judged accordingly.

These accuracy estimates are made for the perfect lens case. There is no way of rigorously
determining the accuracy of the program when wavefront error is present, since no calculation
routine of higher known accuracy is available at present.

4.2 ROTATIONALLY SYMMETRIC COSINE PHASE GRATINGS

Cosine phase gratings are rotationally symmetric wavefront errors of the form of Eq. 3,
which we rewrite here:

OPD =acos (2 bp + ¢) (3)

Fourier analysis states that any waveform can be expressed in terms of a spectrum of sinusoidal
functions of appropriate amplitude, frequency, and phase angle. In this sense, consideration of the
behavior of cosine phase gratings containing only a few harmonics gives some understanding of
the behavior to be expected of high spatial frequency ripple.

The analysis given here was performed entirely with the GASPR computer program. We
have not done extensive theoretical analysis to try and derive analytic equations for some of the
simpler cases. Comparison of our results to earlier work done by Ratcliffe!* and Barakat? leads
to some interesting suppositions, however, and allows us to state some equations empirically which
agree well with our computer derived results.

Ratcliffe’s treatise! gives a very clear exposition of the properties of a linear sinusoidal
phase grating in diffracting a plane wavefront, both being of infinte extent. Ratcliffe defines the
phase grating by its phase amplitude in radians, A¢ = 2ma, where a is the phase amplitude in
wavelengths, and by its period d, in units of length. When A ¢ < 1.0, the only significant amounts
of diffracted energy appear in its first order sidebands, defined by the diffraction angle sin a =
+)2/d. (The wavefront is assumed to be normally incident on the phase grating.) The complex
amplitude of each sideband is iA ¢/2 = ima, and its intensity is 7%a?, The net reduction in intensity

of the undiffracted wavefront is 1 — 27%?,

In the more general case where A¢ > 1.0, a series of sidebands is generated, with the dif-
fraction angles defined by the standard grating equation for normal incidence,

Sin op = nr/d (16)

The complex amplitude A, of each sideband of order n is given by

* References are listed in Section 8.
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Ap = ()Mn(a¢) = (1)*p(2ma), (17

Jy, being the nth order Bessel function of the first kind, and n = 0 corresponding to the undeviated
wavefront,

Barakat? considered the case of a single rotationally symmetric cosine phase grating and
computed the resulting MTF, Although he did not discuss the PSF extensively, he did derive an
equation for the Strehl definition, In our terminology,

P = [I2r) (18)

Note that this is equal to A}. This leads one to suppose that the rest of Eq. 17 might have some
application to the rotationally symmetric case,

The rotationally symmetric cosine phase grating diffracts light into a series of sidebands
which can be defined by Eq. 16. The diffracted light is not traveling as two plane waves, however.
Rather it is traveling in directions defined by the shells of cones whose apex half-angles are de-
fined by a,. If we assume that each order contains the same energy as is diffracted into the cor-
responding order for a linear phase grating, then the fractional displaced energy ADE,, is given by

ADEp = 2[Jn(2ma)]? (19)

To compute the relative intensity, one would presumably divide by the circumference of the cone
of order n, 27ry, with the radius ry expressed in some appropriate units. An empirical solution
to this will be given below.

Further examination of the properties of rotationally symmetric cosine phase gratings will
be done in terms of specific examples, keyed to GASPR outputs. These will cover single spatial
frequencies, combinations of two spatial frequencies, and multiple spatial frequencies.

4.2.1 Single Spatial Frequency

In Eq. 3 there are three variables, gpatial frequency b, phase amplitude a, and the phase
angle ¢. In addition, the pupil may have a central obstruction of differing diameter ratio e. We
will consider the effects of varying all four quantities. First, however, it is useful to rewrite
Eq. 16 in terms of b. b is given in cycles per radius, Thus d = Dp/Zb, and

Sin o = s:an)x/Dp . (20)

The radius of the sideband can then be written in terms of Airy radii 1.22>\/Dp or in terms of the
unit 3/Dp, which is sometimes termed a Rayl:

Tpp = 1.64nb (Airy units) (21)

Tgy = 2.0nb (Rayls) (22)

4.2.1.1 Variation of Spatial Frequency

Fig. 4-6 shows the PSF plots for three cosine phase gratings of different spatial frequencies,
a = 0.02 wavelength and ¢ = 0 in all three cases. b = 12, 27, and 39 cycles per radius, respective-
ly, from top to bottom in the figure. The first order sideband s clearly defined, and the second
order sideband can be seen weakly. A close comparison with a perfect lens PSF would show a
slight increase in the relative intensity in the region between the two harmonics, and a reduction

in relative intensity outside that region.
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The peak intensity of the first order sideband can be approximated fairly well by the equa-
tion

I*(b) = m%/2b = m%/1.22rpy, = m’/rpy, (23)

where the asterisk indicates that this is the relative intensity, normalized to the value at r = 0
for a perfect lens. Table 4-2 compares results.

Table 4-2 — Relative Intensities for Cosine Phase Gratings of the Same Phase
Amplitude and Different Spatial Frequencies

b I* (computer) I* (Eq. 23)
12 5.35 x 107° 5.24 x 1073
27 2.34 x 1075 2.33 x 107
39 1.63 x 1075 1.61 x 107°

Expanding the Bessel function of Eq. 19 for n = 1 and comparing the results to Eq. 23 shows

i Pl !

the latter to be similar to the first term in the expansion. One can speculate that a more general

form of Eq. 23 can be written:

IX(b) = [Jy(2ma)}/2mb,n = 1, 2,3, ...

In effect, Eq. 24 states that the relative intensity in the nth order sideband equals the total energy
in that sideband (Eq. 19) divided by the sideband “circumference” measured in Rayls. The validity
of this equation will be tested in the next section.

(24)

Examination of the displaced energy function EE(perf) - EE indicates that energy is dis-
placed outward from the center of the PSF and inward from beyond the second order sideband.

Table 4-3 lists data for the first two cases,

radii.)

Table 4-3 — Displaced Energy for Single Cosine Phase Gratings

for Spatial Frequencies of 12 and 27 Cycles Per Radius

b

Radius for maximum
outward displacement, r,

DE(ry)

Radius for maximum
inward displacement, r,

DE(r;)

Total DE

Strehl definition, @
1-9

12
13.4

0.007641
39.6

-0.000140
0.007781
0.992128
0.007872

21
28.2

0.007719
88.8

-0.000118
0.007837
0.992128
0.007872

(The second harmonic for b = 39 is outside 100 Airy

Thus, Strehl definition is an excellent definition of total displaced energy in this case for small
wavefront error,
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4.2.1.2 Variation of Phase Amplitude

Fig. 4-7 shows three PSF’s for cosine phase gratings of different phase amplitudes,
Coupled with Figs. 4-2 and 4-6a, they complete a series of five cases in which the phase ampli-
tude a = 0,02, 0.04, 0.08, 0,16, and 0.38274 wavelengths. The last value was selected because it
reduces the Strehl definition to zero, in accordance with Eq. 18. All five examples have the same
spatial frequency, b = 12 cycles per radius, and phase angle, ¢ = 0,

Fig. 4-Tc, for which a = 0.38274, presents a good test for the validity of Eq. 19, for ADEn,
and 24, for I} . Table 4-4 summarizes the calculations. The values for If agree quite well.

Table 4-4 — Relative Intensity and Energy Distribution for
PSF of Cosine Phase Gratings (a = 0.38274, b = 12)

n I (computer) I (Eq. 24) ADEj (Eq. 19)

1 3.60 x 1073 3.56 x 1073 53.7%
2 1.25 x 1073 1.24x 1073 31.3%
3 1.75 x 1074 1.75 x 10~4 7.9%

4 1.36 x 1075 1.39 x 1075 0.84%
5 8.07 x 1077 7.13 x 1077 0.054%

A comparison of the values for ADEp to the encircled energy curve in Fig. 4-Tc also shows good
agreement,

4-18

L UL BESI 1) W s u | PRIV NV I

0

{



1

f

i

(L

BINOLE COSINE  VARY SHABE AMPLITUDE 6212 CYCLES/RADIUS : A = 0.04 WAVELENGTH
g

0.8

-2 RMEER OF POINTS USED =000,

0.7

"R

1073

rs

s
% 0.6
ENCIRCLED ENERGY E(R)

-5

]
s
&
0.4

RELATIVE INTENSITY

E]
&

i

a
o

&

Sh ol aagad gl 1
0.3

e e — M —Liy ]
5.0 10.0 18.0 0 2.0 %B) WO WO HL 500 %0 KC 860 DO 60 WD 860 0D 6.0 1008

RADIUS (UNITS- 1.22 LAMBOR/DP(ANGULAR] 1.22 LAMBOA F/ND.(LINEAR)

a
°

SINGLE COSINE  VARY PHABE PPPLITUDE B=1Z CUER/RADIUY A = 0.38274 WAVELENGTH

il _i

55T 100 o w0 ®o %0 W w00 &0 W0 ®o W0 Mg M0 WO 00 80 0.0 80 i
RADIUS (UNITS- 1.22 LAMBOR/OPIANOULAR) 1.22 LAMBDR F/NO.{LINERR)

@
09 149

08

NIMSER OF POINTS UMD =1000.

1(R)
o
0.7

T AT IR NI AR

5
0.8

ENCIRCLED ENEROY E(R)

8
)
>
[ X

=
&

RELATIVE INTENSITY
5
&
ez 03

4

TETI BYETEINYNe] I |

B
0.1

&

8

«@
&

SINGLE COBINE  VRRY PHR"E APLITUDE Bei2 CYCLES/RAOTUS A = 0.16 WAVELENGTH

a
140

0.9

-2 NOMBER OF POINTS UBED =100,

IR
0.7

-
0s

RELATIVE INTENSITY

&

04 X
ENCIRCLED ENERGY E(R)

0.3

-7,

Ll sl oo

&

T T

., _
54 100 180 20 %50 %0 B0 04 )
RADIUS {UNITS- 1.22 LAMBOR/DP(ANDULAR) 1.22 LANBORA F/NO.(LINEAR)

=
e
a.

Fig. 4-7 — PSF’s for single cosine phase gratings of different phase amplitude

4-19



4.2.1.3 Variation of Phase Angle

Changing the phase angle ¢ varies the internal structure of the sideband and alters its
maximum relative intensity. No change is made in the general distribution of energy, however
Fig. 4-8 shows the changes in internal structure of the first sideband for ¢ = 0, /4, 7/2, and
37/4. Values of ¢ differing by 7 produce identical PSF’s. Numerical data is presented in Table
4-5. This data, and other data not presented, indicates that the exact position of the maxima
within the sideband can be calculated by the equation

i
||

ot

L

Tpp = 1.64nb + constant (25)
where the values of the constant associated with each phase angle are given in the Table 4-5.

Table 4-5 — Variation of Sideband Internal Structure With Phase Angle ¢

=0 6= 1/4 = 1/2 ¢ = 31/4

4-20

(a = 0,02, b = 20 cycles per radius)

¢ Ta IF(r a) Constant
0 33.1 3.19 x 107° +0.3
/4 32.2 2.46 x 1075 -0.6
33.4 2.44 x 107° +0.6
/2 32.5 3.38 x 107° -0.3
31/4 32.8 3.55 x 1075 0

A = 0.02 WAVELENGTH, B = 20 CYCLES/RADIUS,

Fig. 4-8 — Effects of varying phase angle ¢
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4.2.1.4 Variation of Central Obstruction Diameter Ratio

Figs. 4-9, 4-10, and 4-11 combine to illustrate the effects a central obstruction will have
on a lens with wavefront error in the form of a cosine phase grating. Figs. 4-9 and 4-10 show
how the PSF is affected by the phase grating alone and the central obstruction alone. The phase
grating has the constants b = 20 cycles per radius and a = 0,0707 wavelength. The latter was
selected to give an rms wavefront error w = 0,050 wavelength (w = a x 27"/? for a cosine phase
grating). The central obstruction diameter ratios ¢ = 0.40, 0.60, and 0.80 were selected to show
the effects of varying the diameter ratio, rather than to be representative of the LST.

It is immediately evident that increasing the central obstruction diameter ratio spreads out
the energy in the first order sideband for the cosine phase grating. Several more subtle effects
become evident when the displaced energy data is examined closely: (1) A cosine phase grating
will displace an amount of energy which is approximately equal to 1 -9, the Strehl definition. A
central obstruction will displace more energy than its Strehl definition would indicate. (2) A com-
bination of a cosine phase grating and a central obstruction will displace less energy from the
central core of the image than the sum of the energy displacements for the two taken separately.
(3) Conversely, at radii larger than that of the first order sideband, the combination will displace
more energy than the sum of the two considered separately. The third effect may be an indication
that a central obstruction affects scattered light more adversely than linear addition of effects
might imply. However, the effect is quite subtle.

Fig. 4-12 shows the MTF’s for a cosine phase grating with and without a central obstruction
€ = 0.60, and Fig. 4-13 shows the corresponding * Autocorrelation functions. The upper curves in
Fig. 4-12 represent the zero wavefront error case, The lower curves appear to have been multi-
plied by a degradation function which consists of a base spatial frequency independent constant
overlayed with a spatial frequency dependent oscillation, and the * Autocorrelation functions bear
this out. The fact that the * Autocorrelation functions oscillate about zero indicates that the con-
stant term is exp [- (21rw)2]. The central obstruction damps out the overlaying oscillation at mid-
dle spatial frequencies, the size of the damped region being a direct function of the central ob-
struction diameter ratio. The * Autocorrelation plots also indicate the degree to which truncation
error affects the value of this function at v, = 0, where &,; = 1.0, by definition. (The PSF was
truncated at 50 Airy radii for this computer run.)

Two conclusions can be drawn: (1) The central obstruction and the wavefront error do
interact in degrading the MTF, but in a subtle manner. On a gross scale, the MTF degradation
functions for each may be treated independently. (2) The MTF degradation function of Eq. lis
valid for use with cosine phase gratings, although ®,, becomes a rather complicated function.
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4,2.2 Two Spatial Frequencies

Combining two cosine phase gratings in one OPD function gives some indication of the degree
to which there is any interaction between sidebands produced by each. There are two significantly
different cases: first, where one of the cosine phase gratings has a very low spatial frequency,
and second, where both have high but well separated spatial frequencies. In this presentation,
only one set of examples will be given for each, representing the principal conclusions to be
drawn. Closely spaced high spatial frequency phase gratings will be dealt with in the section on
multiple spatial frequencies,
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4.2.2.1 Effect of Adding Very Low Spatial Frequency Component

The high spatial frequency component has the constants b = 12 cycles per radius and a = 0.04
wavelength., The PSF for this function alone is shown in Fig. 4-7a on a 100 Airy radii scale. The
low frequency component has a spatial frequency of 1.5 cycles per radius, and can be considered
to represent figure error. Its phase amplitude is set to 0.04 and 0.16 wavelengths, in the two
examples shown, The OPD waveforms for both examples are shown in Fig. 4-14, and the resulting
PSF’s are shown in Fig. 4-15,

It is clear that the low spatial frequency component is significantly modifying the internal
configuration of the sidebands due to the higher spatial frequency component. However, the amount
of energy in the first order sideband has not been changed significantly, only spread out somewhat,
Between 13 and 28 Airy radii, ADE = 0.03025, 0,03033, and 0.03059 for a = 0, 0.04, and 0.16,
respectively, for the lower spatial frequency,
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4,2.2.2 Interaction of High Spatial Frequency Components

Combinations of higher spatial frequency cosine phase gratings do not interact in the same
way as the combination of a very low spatial frequency grating and a higher spatial frequency
grating, This is illustrated in Figs. 4-16 and 4-17. The two cosine gratings are of spatial fre-
quencies 18 and 25 cycles per radius. Both are maintained at the same phase amplitude which
is scaled o 0.02, 0.08, and 0.16 wavelength, The phase angles are set to 0 and 7 radians to
eliminate peaking at 1.0 normalized radii. Fig. 4-16 shows the composite OPD waveform for the
0.02 phase amplitude case. Fig. 4-17 shows the PSF plots for the three cases cited above.

At low phase amplitudes, there is very little interaction between the first order sidebands,
As the amplitude is increased, however, a number of other gidebands show up in the PSF, Some
of these are higher order terms of the two fundamental spatial frequencies. Thus, in accordance
with Eq. 25, sidebands for by = 18 show up at rp19 = 29.8, rp1g = 59.3, and rp 13 = 88.9, and side-
bands for b, = 25 show up at ry9; = 41.3 and Tpa29 = 82.3 Airy radii. More interestingly, sidebands
show up at beat frequencies: the two brightest sidebands for a = 0,16 wavelength, with the excep-
tion of the first order sidebands, are at 11.8 and 70.8 Airy radii and correspond to b,—b; and
b,+b;. These divert significant amounts of energy from the first-order sidebands, and conse-
quently reduce their relative intensity, as predicted by Eq. 24. Note, however, that the internal
structure of the individual sidebands is not altered significantly, as by a central obstruction or by
figure error.
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Fig. 4-16 — OPD waveform; by = 18, b, = 25, a; =2, = 0,02, ¢; =0, ¢y =7
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4,23 Multiple Spatial Frequencies in Combination

The final cosine phase grating combination we examine is a combination of four spatial
frequencies in which the difference in frequency between component phase gratings is varied. All
components have the same phase amplitude, a = 0.04 wavelength, and the phase angle ¢ is alter-
nated in order of increasing spatial frequency, 0, 7, 0, 7 radians. The spatial frequency combina-
tions are: 24, 30, 36, 42 cycles per radius; 24, 26, 28, 30 cycles per radius; and 24, 24.5, 25,
25.5 cycles per radius. The OPD waveforms are shown in Fig, 4-18, the corresponding PSF’s
are in Fig. 4-19, and MTF’s are in Fig. 4-20.

As the spacing between components is reduced, the character of the OPD waveforms
changes, as do their effects on the PSF and MTF. Down to 2 cycles separation, the four compo-
nents behave independently, except for the formation of sum and difference sidebands of the type
discussed in the last section., (This latter reduces the first-order sideband intensities somewhat.)
The total rms wavefront error obeys the formulation

w=(wl+ w?+ ...+ wpd) (26)

giving w = 0.0566 wavelength rms for the first two examples. For the third example, however,

w = 0,0722, and the OPD waveform is more nearly characteristic of a single spatial frequency
which has been modulated by a low spatial frequency component. The effects are noted in the PSF
by a change in the internal structure of the sideband and a disappearance of the sum and difference
sidebands. The encircled energy function drops considerably below the first sideband, and the
MTF drops measurably. Note in particular the MTF reduction at high spatial frequencies, a sign
of the presence of very low spatial frequency components.

Finally, it should be noted that the interaction of phase gratings spaced as closely as in the
third example is strongly dependent on the value of the phase angle ¢. Had a phase angle of zero
been used for all four components, the OPD waveform would have been reversed, with the large
phase amplitude excursions occurring in the section near the center of the pupil, This would have
significantly reduced the net rms wavefront error, and would have affected the PSF and MTF very

differently.
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4.2.4 Cosine Phase Gratings for Scatter Function Models

It seems logical to use Fourier decomposition of the wavefront error into a continuous or
discrete spectrum of cosine phase gratings as a basis for modeling the scatter function. The pre-
ceding sections give graphic demonstrations of the difficulties involved. The interactions of
different spectral components when closely spaced, or when in the presence of figure error or a
central obstruction, make such analysis difficult except through programs such as GASPR.
Nevertheless, some useful inferences can be drawn from a qualitative model which pictures the
source of scattering as a series of very low phase amplitude cosine phase gratings well separated
in spatial frequency. In building such a model, it is necessary to distinguish between linear phase
gratings and rotationally symmetric phase gratings, since each affects the image in a different
manner,

Eq. 23 gives the relative intensity of the first-order sideband of a rotationally symmetric
cosine phase grating of small phase amplitude. The corresponding equation for a linear cosine
phase grating is

I* = 7%l (27

where a is the phase amplitude in wavelengths, as before. In a lens with a rotationally symmetric
grating, the diffracted light will form a ring of light centered on the Airy disk of a star image.
With a linear grating, the diffracted light will appear as two ghost images of the star. Note that
with a linear grating, the relative intensity is independent of the spatial frequency of the grating,
while for a rotationally symmetric grating, it is inversely proportional to the grating frequency.

That is,
IE (by) « a (linear grating) (28)

and
I} (b)) =a’/b  (rotationally symmetric grating) (29)

It seems reasonable to presume that these proportionalities will remain valid, even if Eqs. 23 and
27 are not quantitatively correct.

As will be shown in discussing wide angle scattering in Section 5, scatter functions tend to
be inverse power functions of the scatter angle. That is, plotting the logarithm of the scatter
function against log sin « produces curves which are roughly straight over extended lengths with
a negative slope —s, where s usually lies in the range 1.5to 3.0. (It is usually assumed that s
drops to 0 at very small angles.) Thus, typical scatter intensities I (a) are proportional to

(sin @)~8, and from Eq. 20,
I3 () < (sin 0)”8 b8 (30)

If Eq. 30 is to hold for our phase grating model, clearly the phase amplitude of each spectral
component must be proportional to its spatial frequency. Thus, from Eqgs. 28 and 29,

a(b) « p—S/? (linear grating) (31)

and

a(b) < b* Y% (rotationally symmetric grating) (32)
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Egs. 31 and 32 lead to different conclusions as to the distribution of phase amplitude as a
function of spatial frequency required to produce a given slope in the scatter function, and one
must therefore question which, if either, best represents scattering from real surfaces. Surface
irregularity microstructure is usually considered to be completely random, and therefore best fit
by a spectrum of linear phase grating of varying orientation. Some rotational symmetry will be
found in the ripple on large aspheric mirrors, however, due to zonal figuring and polishing during
fabrication. Thus both types of phase grating will be needed in any model purporting to be com-
plete.

The cosine phase grating models have important implications concerning scaling of the
scatter function with wavelength, Both Eqs. 31 and 32 imply that for a constant slope s, the ampli-
tude a(b) must vary monotonically with the spatial frequency b. The amplitude a has been given
in units of wavelengths. To scale to different wavelengths, we should write a(b) = w(b)/A, where
w(b) and X are expressed in units of length. Thus the relative intensity for a single grating of
spatial frequency b for either linear or rotationally symmetric cosine gratings will scale as the
inverse square of the wavelength. Note from Eq. 20, however, that the scatter angle has also
shifted with wavelength, Thus, if we wish to determine how the relative intensity at a specific
scatter angle scales with wavelength, we must compare the appropriate spatial frequency compo-
nents in the wavefront irregularity function w(b), and take the change in magnitude of w(b) into
consideration. If this is done for both linear and rotationally symmetric phase gratings, using
Eqs. 20, 30, 31, and 32, it will be found that in both cases,

I$(a, V) < (sin a)~S/2 @9 (33)

Now I* is a normalized intensity, I* = I/I,, where I; is the intensity at the center of the
diffraction pattern for a perfect, unaberrated lens. We know that

L)/ To(Ay) = (A/29)? (34)
Thus
(o, >‘2) _ Ig(xz) ™ (C!, 7‘2) = (M/’*z) 4-8) (35)

T, ) L) (e, Xy

Note that when s = 0, Eq. 35 implies that the intensity scales by the inverse fourth power of
the wavelength. To understand this physically, recall that intensity is measured in terms of power
per unit solid angle: thus, when the wavelength is reduced by a factor of 2, for example, the
amount of energy diffracted by a given spatial frequency grating is quadrupled, and the solid angle
into which it is diffracted is divided by 4. This applies strictly only in the region where Eqs. 23
and 27 are valid, i.e., where one can safely assume that all diffracted energy appears in the first-
order sidebands of the phase gratings.

Eq. 35 has implications which should be checked experimentally. We normally assume that
scatter functions scale as the inverse square of the wavelength, and this is true as far as total
scattered light is concerned. But scatter at a given angle will scale as the inverse square of the
wavelength only if the scatter coefficient is itself an inverse square function of the scatter angle,
according to Eq. 35. Since measurements of the scatter function have found s to vary between
1.5 and 3.0, wavelength scaling should vary accordingly (see Section 5).
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4,3 ZONAL RIDGES

A zonal ridge is a high or low region of the mirror which extends around the total circum-
ference at the same radius from the center. The most commonly encountered type of zonal ridge
is edge roll-off, but such ridges can occur at any radius. They are commonly seen in the early
stages of fabricating large aspheric mirrors where polishing is done with subaperture sized laps.

In examining zonal ridgeé, we will use the Gaussian profile OPD function described in
Section 4,1.1. This profile is only a mathematical convenience, however, and many other profiles

are possible,

4-36

[

€

Qi

L W

Qi

(i

(I

Qo

{

Q.

l

d



4.3.1 Gaussian Cross Section Ridge

Figs. 4-21 and 4-22 represent two Gaussian profile ridges centered at a normalized pupil
height of 0.7, differing only in width. Wide ridges behave like zonal spherical aberration, having
their principal effects within the first few Airy radii out from the central maximum. Narrow
ridges have relatively little effect on the innermost portions of the ring structure, but tend to
introduce oscillations into extended regions of the outer ring structure. In general, the latter
involve very little net transfer of energy. Wide ridges affect the middle and outer portions of the
MTF more than narrow ridges, although neither of the cases shown here affect the MTF drasti-
cally. The heights shown here, »/10, are somewhat larger than is likely to be found in the highest
quality mirrors, although the 154-inch mirror discussed in Section 4.7 has one or two ridges
extending over partial zones which begin to approach this height. Zones of this order of magnitude
are not too serious unless there are enough of them to act like a phase grating.
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4.3.2 Edge Roll-Off

Edge roll-off is a very common fabrication error on all types of optical elements and can
be quite large, With primary mirrors for Cassegrain type telescopes, edge roll-off may occur
at both outer and inner edges. Fig. 4-23 shows the OPD waveforms for two hypothetical cases of
primary mirrors for a telescope having a central obstruction diameter ratio of 0.32, one with
roll-off on the outer edge only, and the other with roll-off on both edges. The corresponding
PSF’s are shown in Fig. 4-24 with the PSF of an unaberrated lens having the same central obstruc-
tion for comparison. (Fig. 4-25 shows the two MTF’s.)

Both OPD waveforms displace energy from the central maximum. The energy is spread
relatively uniformly through the first 20 to 25 Airy radii outward from the center of the pattern,
judging from the PSF and encircled energy curves, with no local concentrations,

The manner in which the MTF is degraded emphasizes that the energy is displaces well
outward from the central core. The MTF degradation function (not shown) is clearly quite smooth,
although there is more high spatial frequency suppression than one would get from, say, a very
high spatial frequency cosine phase grating of similar rms wavefront error. Note that the inner
edge roll-off has no effect on the high spatial frequency MTF beyond the second inflection point
due to the central obstruction, '
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Fig. 4-23 — OPD waveforms for edge roll-off
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4.4 ROTATIONALLY SYMMETRIC “RANDOM” WAVEFRONTS

“Random” is put in quotation marks in the title to emphasize that the OPD varies randomly
along the pupil radius, and has a fixed value around the circumference of the pupil at any given
radius, The image degrading properties of this wavefront may therefore be somewhat different
from a fully random wavefront, The rotationally symmetric model is useful in studying the
effects of varying the parameters of a random wavefront, however, which is the present intent,

Two parameters of the random wavefront will be varied in these examples, the correlation
length (actually the width of the smoothing function) and the shape of the smoothing function. The
rms wavefront error is held at 0.1 wavelength, and the seed used to define the random number
array is fixed at 233425. The actual value of the seed is not important, only that it be the same,
so that all examples start with the same random number array, simplifying direct comparison of
the different examples.

4,4,1 Variation of Correlation Length

Reducing correlation length introduces more high spatial frequency variations in the OPD,
diffracting light further out into the PSF ring structure. In the examples shown in Figs. 4-26
through 4-29, the correlation lengths used are 0.33, 0.10, and 0.03 pupil diameters. Fig. 4-26
shows the OPD waveforms, Fig, 4-27 the PSF’s and encircled energy functions, Fig. 4-28 the
MTF’s, and Fig. 4-29 the * Autocorrelation functions.

The effects of varying the correlation length are self-evident, but some are worth comment-
ing on. Some of the more interesting variances are summarized in Table 4-6, A Gausslan smooth-
ing function 0.33 wide reduces the high spatial frequency oscillations so much that the wavefront
appears to be a form of spherical aberration, Note that the peak-to-peak wavefront error is
smaller than one would expect from the usual rule of thumb that OPD (peak to peak) = 5x OPD
(rms). The actual ratios are listed in the table. Strehl definition is usually associated solely
with the rms wavefront error, but here we see a small variation which indicates the Strehl defini-
tion to be somewhat less sensitive to high spatial frequency wavefront errors than to low spatial
frequency errors. The fraction of energy displaced outward by the wavefront error is about the
same in all cases, roughly 28 percent. Where it reappears is indicated in Table 4-6 by listing the
values of the radii corresponding to 10 percent and 1 percent displaced energy. For experiments
requiring, say 99 percent encircled energy in the smallest possible circle, high spatial frequency
wavefront error is very destructive,

Table 4-6 — Some Quantities Affected by Varying Correlation Length

Correlation length 0.33 0.10 0.03
OPD(p-p)/OPD(rms) 2.9x 4.2x 5.0x
Strehl definition 0.662 0.672 0.677
ra (Airy radii) for:
10% displaced energy 2.0 7.7 20.8
1% displaced energy 3.4 10.1 41.0

The changes in the MTF and * Autocorrelation function are what would be expected from
the addition of higher spatial frequency wavefront errors. Low spatial frequency MTF is degraded
more severely, and high spatial frequency MTF less so. * Autocorrelation function values drop
to zero more rapidly, and show smaller excursions about zero for short correlation lengths.
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4,4,2 Variation of Smoothing Function

Four smoothing functions are available for use in generating random OPD functions with
GASPR: Gaussian, square, triangular, and linear exponentials. Examples of all four are given
here, for a common correlation length of 0.1. Plots are given for OPD waveform, PSF and en-
circled energy, and * Autocorrelation function. Plots for the Gaussian smoothing function exam-
ples are found in Figs. 4-26, 4-27, and 4-29. The remaining three examples are shown in Figs.
4-30, 4-31, and 4-32,

The main difference between the different smoothing functions is in the degree to which each
reduces the high spatial frequency components of the OPD waveform. The Gaussian smoothing
function completely eliminates the highest frequency components, while the square smoothing
function leaves the largest high spatial frequency residual. (This residual is a result of a form of
“aliasing,” due to the sharp edge of the square smoothing function. As the edge of the smoothing
function passes each point in the set of random numbers defining the OPD, there is an incremental
change in the “smoothed” function, which shows up as a high spatial frequency residual component.)
The triangular and linear exponential smoothing functions produce intermediate smoothing, re-
sembling the effects of the Gaussian function more closely than those of the square smoothing
function, The principal changes are clearly related to the increased high spatial frequency content
of the OPD waveform with square smoothing. Note in particular the behavior of the * Autocorrela-
tion function near its origin. In all examples except that involving square smoothing, the curves
appear roughly Gaussian near the origin. For square smoothing, however, the early parts of the
curve appear to be dropping linearly. Similar patterns will be observed for the 154-inch mirror

discussed in Section 4.7,

Table 4-7 summarizes the effects of different smoothing functions on the same quantities
listed in Table 4-6. Note in particular the radii for 10 percent and 1 percent displaced energy for
square smoothing. None of the other variations is at all significant.

Table 4-7 — Some Quantities Affected by Varying the Smoothing Function

Smoothing function GAUS SQUA TRIA LEXP
OPD{p-p)/OPD(rms) 4,2x% 4.3x 4.0x 4.1x
Strehl definition 0.672 0.670 0.670 0.671
r 5 (Airy radii) for:
10% displaced energy T 7.2 7.2 6.3
1% displaced energy 10.1 9.9 9.9 9.9
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45 EFFECTS OF APODIZATION IN THE PRESENCE OF WAVEFRONT ERROR

Apodization, or reduction in the PSF sidebands through gradation in the aperture trans-
mittance from center to edge of the entrance pupil, is sometimes cited as a technique for improv-
ing the image quality of optical systems. An extensive review article on the technique has been
written by Jacquinot® in “Progress in Optics.” We have seen no articles which discuss how apodi-
zation affects systems with wavefront error; however, the program GASP, from which we derived
GASPR, contained a Gaussian apodization function for use with Gaussian cross section laser
beams. We have retained the capability in GASPR (see Section 4,1.1). Results of our tests with
this apodization function are of interest in dealing with the scattered light problem.

Fig. 4-33 shows the effects of applying Gaussian apodization to a perfect, unaberrated lens.
The top PSF is for the unapodized lens, The other PSF’s represent Gaussian apodization of a
form such that the transmittance has dropped to 1/e = 0.3679 at radius 0.5 and 0.25, respectively.
The degree to which the sidebands have been suppressed is clearly evident, although in the R =
0.25 case, the effective aperture diameter has also been reduced, increasing the effective diameter
of the image,

Fig. 4-34 shows the effects of apodization when a cosine phase grating, a = 0,0707 wavelength,
b = 12 cycles per radius, is present. While it is clear that a portion of the PSF has been sup-
pressed, it is also clear that the sidebands due to the cosine phase grating have not been reduced
significantly, only modified by convolution with a different pupil. In fact, the third and fourth order
sidebands are now visible, where they had been masked by the Airy pattern. What has happened
is that pupil diffraction (for want of a better name) has been suppressed while wavefront error
diffraction has not,

The effect is even more striking in Fig. 4-35, which involves a random wavefront error of
0.005 wave rms and 0.01 correlation length, 0.005 wave rms corresponds to a wavefront surface
deformation o = 25 & in the middle of the visible spectrum, The top curve shows the OPD wave-
form. The second curve shows the unapodized case, where the presence of wavefront error is
barely detectable (Strehl definition = 0.999). The third curve shows apodization, R = 0.5, and the
presence of the wavefront error is now clearly evident,

There are two points in this presentation. First, apodization will not produce significant
reductions in the sideband structure if significant amounts of wavefront error are present, Sec-
ond, apodization may be useful in measuring (or at least finding) any small amplitude wavefront
error by removing pupil diffraction as a masking element. This may be of significant benefit in
tests for wide angle scatter due to surface microstructure (see Section 7.1 for further discussion).
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4.6 “WAFFLE” WAVEFRONT DUE TO CELL STRUCTURE OF MIRROR SUBSTRATE

The primary mirror substrate for the LST will be a lightweighted structure of ULE fused
silica or Cer-Vit. In either case, it will in effect consist of a thin plate supported by an eggcrate
structure. If made of ULE, the structure will be formed by fusing thin plates of the material, and
the cells will be square, If made of Cer-Vit, the structure will be machined from a solid blank,
and the cells will be hexagonal. At present, plans are to use ULE, with a 12- by 12-centimeter
cell size. It is this configuration which is examined here.

There is some concern that elastic deformation and restoration of the front plate during
polishing, and/or gravity release after insertion in orbit, will result in the appearance of bumps
at the center of each cell. These will produce a regularly spaced array of dimples in the wave-
front, which will give the OPD waveform map a waffled appearance, in turn producing an array of
spikes in the ring structure of the PSF. G. Lenertz has provided a simplified first order model
for estimating the maximum possible surface deformation. We have used the program FRAP-2D
to estimate the effects of this waffle wavefront on the PSF.

The model for computing the maximum deflection § is

1 2 .
Max & = 0.048’7wa3(1 - 1) (36)
Et
where 6 = peak-to-valley surface deformation, inches

w = unit applied load = pt

p = density =~ 0.1 Ib/inch?

a = cell dimensions = 4,72 inches (12 cm)

i = Poisson’s ratio ~ 0.2

E = Young’s modulus =~ 10" psi

t = plate thickness, inches

(Lenertz’ original notation is used here.) For a nominal plate thickness of 1 inch (2.54 cm),

Eq. 36 leads to a maximum 6 = 2,32 x 107 inches, or 0.0093 wavelength surface deformation at

A = 0.6328 micrometer. The peak-to-valley wavefront deformation will therefore be 0.0186 wave-
length at X = 0.6328 micrometer, 0.0363 wavelength at A = 0.325 micrometer and 0,0970 wavelength
at A = 0.1215 micrometer, according to this estimate.

FRAP-2D was used to estimate the effects of a waffle wavefront on the PSF. A 256 by 256
matrix was used to define the pupil function, with the pupil diameter being 125 units. The OPD
waveform was defined by the equation

OPD(x, y) = (K/#)[1 + cos (2mx/5)][1 + cos (27y/5)], (37

with the cells being 5 units on a side (12 cm for a 3-meter diameter, or b = 12.5 cycles per
radius). K is the peak-to-valley wavefront error in radians. Values of 0.1, 0.25, and 0.5 radians
were used, corresponding to 0.0159, 0.0398, and 0.0796 wavelengths peak to valley, respectively.

(To convert to rms, multiply by /5 /8 = 0.28.)

FRAP-2D uses a fast Fourier transform technique which restricts the output format for the
PSF. With a 125-unit diameter pupil in a 256-point square pupil matrix, sample points in the
PSF are spaced at 125 3/256 Dp radian intervals in image space. This is a spacing of 0.40 Airy
radii, which does not give very good resolution in the ring structure, The results are good enough
to show the spikes due to the waffle wavefront with OPD values of the magnitude indicated above,
The output plots are two-dimensional perspective plots, A log relative intensity scale has been
used for the PSF’s to bring out the diffraction spikes. A selection of outputs are shown in Figs.

4-36 through 4-39.
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Fig. 4-36 is the PSF for a perfect lens for comparison. (It also illustrates why rotationally
symmetric wavefronts have been used for most of the analysis in this paper.) Fig. 4-37 is the
PSF for a 0.5-radian peak-to-valley waffle wavefront., Fig. 4-38 is the same wavefront with an
€ = 0.32 diameter ratio central obstruction. Fig. 4-39 shows the MTF for the latter case.

The diffraction spikes appear in a 3 by 3 array including the central maximum for the PSF,
The eight added spikes fall into two height categories, with the side spikes being high than the
corner spikes. Relative heights h*, measured with respect to the central maximum are the same
with or without the central obstruction, at least in the examples we examined. The results are
summarized in Table 4-8. '

Table 4-8 — Relative Heights for Diffraction Spikes

Ad OPD(p-v) ' w h* (side) h*(corner)
0.5 0.0796 .. 0,0222 0.00382 0.000942
0.25 0.0398 0.0111 0.000953 0.000234
0.1 0.0159  0.0044  0.000154 0.000037

An equation of the form
h* = C (OPD)? (38)

was fit to this data, Constants of 0,604 for the side spikes and 0.149 for the corner spikes fit the
data to within 3 in the third significant figure, generally. This is probably near the limit of
accuracy of the computer derived results,

The positions of the spikes can be determined using the grating equation, which gives x and
y coordinates for each spike. This gives values for the distance from the central maximum of
20.50 and 28.99 Airy radii for the side spikes and corner spikes, respectively. The relative in-
tensity for the diffraction pattern envelope is given by

I§ = 0.0452/rp° (39)

Thus Ié = 5.25 x 107% and 1.86 x 10”¢ for the side and corner spike positions, respectively.

Eq. 38 can be used in conjunction with Lenertz’ data for expected surface deflections to
compute the probable diffraction spike heights to be expected in the LST image. This has been
done and the results summarized in Table 4-9. Relative heights are listed in terms of h*, h*/I§
and m* stellar magnitudes.

Table 4-9 — Estimated Diffraction Spike Heights for LST

Side Spikes Corner Spikes
A, um OPD(p-v) h* m* h*/I(”i‘ h* m* h* /13
0.6328 0.0186 0.000210 9.2 39.9 0.000052 10.7 27.8
0.3250 0.0363 0.000794 7.8 151 0.000196 9.3 105
0.1215 0.0970 0.00568 5.6 1,080 0.00140 7.1 754

It should be understood that these are first-order calculations which use simplified models
for the surface deformation and the shape of the wavefront deformation, and do not consider inter-

4-57



N 81 T} ITEN B 81 D D DT BN ] et B S50 DN I BN

Fig. 4-36 — PSF for perfect lens

Fig. 4-37 — PSF for a 0.50-radian waffle wavefront error (0.0796 wavelength)
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Fig. 4-38 — PSF for 0.50-radian waffle wavefront error plus 0.32 central
obstruction

Fig. 4-39 — MTF for example of Fig. 4-38
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actions with other types of wavefront error, The analysis is also monochromatic; in white light,

the eight diffraction spikes will be replaced by dispersed spectra spread along lines radiating
outward from the central maximum, These qualifications having been stated, however, this data
makes it appear that diffraction spikes may present a significant problem.
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4,7 ANGLO-AUSTRALIAN TELESCOPE PRIMARY MIRROR

Dr. David S. Brown of Sir Howard Grubb Parsons and Company, England, has provided us
with interferometric measurements of the surface irregularities of the 154-inch-diameter primary
mirror of the Anglo-Australian Telescope (A.A.T.), which they have recently completed. This
data is unique in that it contains the only quantitative high spatial frequency measurements of
mirror surface irregularities which is currently available. The data was taken with a shearing
interferometer, and measures wavefront deviation at 1-inch increments along 20 mirror radii.
This puts the results in an ideal format for analysis using GASPR. The results of such analysis
do not duplicate the actual PSF of the A.A.T. primary mirror, but they show the effects of the
types of ripple actually encountered in a real telescope mirror.

4,7.1 The Input Data

Two forms of data were supplied by Dr. Brown. One is a coarse wavefront map of the entire
mirror, specified by an 11 by 11 grid of data points (see Fig. 4-40). The other is a table of OPD
values at 1-inch increments along 20 mirror radii (see Table 4-10), All measurements were made
at A = 5780 A, and each value represents a wavefront error, not a mirror surface error, The 20
radii were grouped into two sets, as indicated in Fig. 4-41. The wavefront error data has been
plotted in Fig. 4-42.

In his letter, Dr. Brown describes the measurement and data reduction technique as follows:

“The radial wavefront profiles were obtained from interferograms, all taken at the same
focal setting with the interferometer (and slit source) rotated to different position angles. For
each interferogram orientation, a zero shear interferogram was also taken and the difference of
the sheared and unsheared interferograms used in the reduction process to avoid any systematic
errors due to gravitationally induced flexures in the interferometer itself. This procedure was
repeated for each of four positions of the mirror on its support system (at position angles of 0°
90°, 180°, 270°) and each profile represents the mean of the profiles obtained in the four positions
of the test support. Interferogram measurements were made on prints using a simple interpolat-
ing device (developed by Grubb Parsons), and the reduction technique was essentially the simple
summation method given in my paper of 19554, though with the volume of data involved the mea-
surements had to be computer processed.

“The profiles were obtained along a single diameter per interferogram, parallel to the shear
direction. The relative heights of the different profiles were obtained by summing along short
chords above and below the central hole to link the starting points of different profiles, Signifi-
cant closing errors were found for the polygon composed of these short chords and for this reason
it is possible that the absolute height of some of the profiles could be in error by as much as A/20,
A more satisfactory procedure would have been to link the various profiles using several different
polygons but available time and effort did not permit this at the time.,”

Figuring of the mirror was carried out by a computer assisted process which has been
described in reference 5. In his letter, Dr. Brown describes the mirror fabrication process as
follows:

“Polishing and figuring the mirror was carried out almost entirely with a single, full size
“Flexible” lap. The figuring to stage 1 specification followed the fairly standard (for us) routine
of reducing astigmatism to an acceptably small value followed by aspherizing and figuring, treat-
ing the mirror as a figure of rotation. This approach proved completely adequate to completion
of stage 1 work (99 percent of energy within 1.0 arc-second image diameter, 95 percent within
0.7 arc-second, and 80 percent within 0.4 arc-second). On completion of stage 1, measured pri-
mary astigmatism was about 0.25 arc-second circle of confusion and at commencement of stage 2
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figuring it was thought necessary to reduce primary astigmatism to have a good probability of
achieving stage 2 specifications, From then on the mirror was not considered to have rotational
symmetry and described by a series of profiles obtained by the techniques outlined earlier in this
letter. During most of this stage an adequate description of mirror errors was obtained by use
of 10 profiles each with measurements at 1-inch intervals, though at times greater volumes of
data had to be handled. During both stages the figuring was carried out with computer assistance
apart from a limited period midway through stage 2 when industrial action limited our data hand-
ling capacity . ..”

Both the coarse wavefront error map and several of the radius profiles have been used in
the analysis described below,
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4.7.2 Two-Dimensional Wavefront Analysis

A brief two-dimensional wavefront analysis of the 154-inch mirror has been performed,
based on the 11- by 11-point wavefront error map of Fig. 4-40. The purpose of the analysis was
to show the presence of rotational asymmetry in the wavefront, and to indicate how this will affect
image quality at various wavelengths. The results are shown in Figs. 4-43 through 4-46,

A polynomial equation was fit to the 11- by 11-point grid and used to interpolate data points
in a 33- by 33-point grid. This smoothed wavefront is plotted in Fig. 4-43. This wavefront map
shows the saddle-shape characteristic of astigmatism. The peak-to-peak wavefront error is
0.65 wavelength, and the rms is 0,12 wavelength. A comparison of this data to the more detailed
measurements along separate radii shown in Figs. 4-41 and 4-42 and Table 4-10 shows general
agreement as to the shape of the wavefront, The more detailed measurements indicate a peak-to-
peak wavefront error of 0.88 wavelength, due to high and low points along the rim of the mirror
missed by the coarse grid. Note also that the peak-to-peak wavefront error of the wavefront
averaged over each zone is only 0.108 wavelength, indicating that the truly rotationally symmetric
component of the wavefront error is a small fraction of the asymmetric component.

Point spread functions were computed directly from the 11- by 11-point grid. The wavefront
error values were scaled to simulate use of the telescope at X = 3250 and 1215 f&, as well as the
test wavelength of 5780 A. In examining the resulting PSF’s, shown as linear scale perspective
plots in Figs. 4-44 through 4-46, it should be noted that these plots are normalized to 1.0 for the
highest peak in the PSF. Thus as the wavelength decreases and the central peak intensity (the
Strehl definition) decreases, the ring structure becomes more prominant in part because of scale
change in the plot, Thus the three PSF’s should not be compared directly, but used only to indi-

cate relative differenceos in height between the central maximum and the ring structure. Note that
in Fig. 4-46 (A = 1215 A) the central maximum is no longer the highest point in the pattern.

The three figures show an increasing prominance in the ring structure as the wavelength
decreases. They also show large numbers of bumps in the ring structure, It is difficult to be
certain whether these are real, or an artifact of the small number of sampling points used to de-
fine the wavefront. We have run similar calculations using the 33 by 33 interpolated data point
grid, and the same lumpiness appears at A = 1215 A. This would rule out the simplest forms of
aliasing. Note, however, that the rms wavefront error at x = 1215 Ais roughly 0.6 wavelength,
which is enough to thoroughly destroy the inner structure of the PSF.
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Fig. 4-43 — Wavefront map: interpolated from data grid
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Fig. 4-45 — Point spread function at A = 325 nm
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Fig. 4-46 — Point spread function at X = 121.5 nm
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4.7.3 Rotationally Symmetric Wavefronts Based on A.A.T. Radius Profiles

Fig. 4-42, which plots all twenty radial wavefront profiles supplied by Dr. Brown, shows
that there is a considerable amount of fine structure in the mirror surface. Periods of the fine
structure appear to be on the order of 4 to 5 inches, and heights generally do not exceed 0.1
wavelength at 5780 A, the test wavelength. Much of this fine structure is damped out in taking
the average over the same zone height (radius) in all twenty profiles, which indicates that it is
not truly rotationally symmetric. However, individual ridges appear to be present over several
adjacent radius profiles, and sometimes vary in zone height from profile to profile. It is possible
that averaging around an elliptical zone would reveal a more prominant fine structure in the
averaged profile, If so, or if the ridges merely extend over portions of a complete zone, using
the individual radius profiles as the profile of a rotationally symmetric wavefront allows us to
examine the effects of such fine structure on image quality, knowing that this particular example
exists in a real mirror,

Three profiles have been selected from Table 4-10 for examination using GASPR. Radius
5A was selected because it has considerable fine structure with almost no obvious low spatial
frequency structure, Radius 9 has both low and high spatial frequency components, and thus is a
somewhat better representative of the real wavefront. The averaged wavefront profile was chosen
as the third example to see if the rotationally symmetric component was of a large enough magni-
tude to be noticeable when scaling the wavefront error to model performance at shorter wave-
lengths, Three wavelengths were chosen, the test wavelength of 5780 A, and 3250 and 1215 A, The

results are shown in Figs, 4-47 through 4-54.

In each case, the 53 data points from Table 4-10 were interpolated using a parabolic fit,
generating the 512 points required for Gaussian quadrature, These were then scaled to the appro-
priate values of OPD for the three wavelengths. The results are shown in Fig. 4-47, for each
radius at the shortest wavelength. (In comparing the plots, note that a different OPD scale is
used in each case.) All show evidence of what appears to be a relatively high spatial frequency
harmonic component, This will be discussed further in Section 4.7.4. Table 4-11 gives rms
wavefront errors for all nine wavefronts, Note that these are all significantly lower than the value
of 0,12 wavelength rms at x = 5780 A given for the coarse two-dimensional wavefront map in

Fig. 4-43.

Table 4-11 — RMS Wavefront Error for the Rotationally
Symmetric Wavefronts Generated From the A.A.T. Data

Radius Profile

Wavelength 5A 9 Average
5780 A 0.0465  0.0963 0.0317
3250 A 0.0810  0.1713 0.0564
1215 A 0.2167  0.4581 0.1508

Figs. 4-48 through 4-53 show the PSF’s and MTF’s for these nine cases, grouped by radius
profile and wavelength. All show heavily degraded image quality at the shortest wavelengths,
particularly in terms of MTF degradation. This is most evident for radius 9 and least evident for
the averaged radius, as expected from the rms wavefront error data.

It is interesting to examine the PSF’s for evidence of single harmonic cosine phase gratings.
There is some evidence that a sideband from such a phase grating exists at about 28 to 30 Airy
radii. This is most strongly evident for radius profile 9 at 1215 A (Fig. 4-50c), both from increase
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in relative intensity and from the shoulder in the encircled energy curve. It can also be seen for
the averaged profile (Fig. 4-52c), although not as prominently. The evidence is not as strong for
radius 5A, except in that the relative intensity seems to be raised somewhat over the entire region
from 20 to about 34 Airy radii. This could indicate a series of closely spaced spatial frequencies.

Finally, Fig. 4-54 shows * Autocorrelation functions for each radius profile. In this case,
different wavelengths were chosen to minimize the computational errors by setting the rms wave-
front error to between 0.05 and 0.10 wavelength, Note that none of these curves show any Gaussian
characteristics near zero radius, The rapid (compared to Gaussian) drop in the * Autocorrelation
function near zero radius is indicative of the presence of high spatial frequency components in the
wavefront error, and is most prominant for radius 5A (Fig. 4-54a), where the low spatial frequency
component has been suppressed, The roughly linear drop for the averaged profile * Autocorrela-
tion function is similar in appearance to that for the square-smoothed random wavefront (see
Fig. 4-32a), near zero radius. :
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4,7.4 Spatial Frequency Spectrum Versus Displaced Energy

The GASPR printout includes the function displaced energy, DE = EE(perf) - EE, the differ-
ence between the encircled energy for a perfect, unobstructed lens and for the wavefront error
function under study. The displaced energy indicates the fraction of the total energy in the image
which has been displaced outward beyond a given radius. The incremental displaced energy
ADE = DE(r,) - DE(r,) may be computed from this data. The incremental energy function indicates
the amount of energy which has been added to (positive value) or subtracted from (negative value)
the zone Ar = r, - r;, compared to the PSF for a perfect lens. It is, in effect, the zonal scatter
function. The true scatter function is proportional to ADE/#(r; + ry). The integral of ADE from
r = 0 to r = = is by definition zero, since it measures both where the scattered light comes from
and where it goes to. The energy “scattered” by the central obstruction is also included.

For our rotationally symmetric wavefronts, it is possible to determine the spatial frequency
distribution of the wavefront irregularities by taking the one-dimensional Fourier transform of
the radius profile. An example of the resultant amplitude spectrum is shown in Fig. 4-55 for the
wavefront profile averaged over zones. The spatial frequency scale is in cycles per inch, and
the spectral density scale in arbitrary units of the form wavelengths amplitude per cycle. The
maximum spatial frequency is limited to 0.5 cycle per inch by the sampling interval, which is 1
inch,

Coupling the amplitude spectrum plot with the incremental displaced energy function allows
comparison of the scatter function with the spatial frequency distribution of the wavefront irregu-
larities causing the scattering. This gives some measure of the validity of models based on a
spectrum of cosine phase gratings. To carry out the comparison, both the spatial frequency spec-
trum and incremental displaced energy have been computed for radius 5A and 9 of the A.A.T.
wavefront profiles. The results are given in Table 4-12 and Figs. 4-56 through 4-59.

Table 4-12 lists the incremental displaced energy values for 1 Airy radius zones from

r =0to r = 50 Airy radii. Data is given for a perfect lens with a 0.324-diameter ratio central
obstruction, and for the two wavefront profiles, scaled for A = 3250 A. The values are fractions
of the total energy in the image. Figs. 4-56 and 4-58 are the amplitude spectra for the two pro-
files, and Figs. 4-57 and 4-59 are the corresponding incremental displaced energy curves. To
facilitate the comparison of the two curves, the square root of ADE has been plotted instead of
ADE, since this corresponds more directly to the amplitude of the source phase grating, The
radius scales have also been matched, with one Airy radius corresponding to a spatial frequency
of 0.007919 cycle per inch,

The correlation between peaks in ADE 172 and spatial frequency components in the amplitude
spectrum is most striking in the case of radius profile 5A, where the low spatial frequency com-
ponents are of relatively small amplitude. The variation of amplitude with radius/spatial fre-
quency also corresponds well between the two curves. The correlation is less striking for profile
radius 9, where the low spatial frequency components are of considerably larger phase amplitude.
Some peaks in the incremental displaced energy function correspond directly to peaks in the am-
plitude spectrum, but others do not, and the differences in amplitudes are more marked than for
radius 5A. This is undoubtedly due to interactions between different spectral components of the
type noted in, for example, Figs. 4-15b and 4-17c. (The central obstruction contributes to this
process as well,) To facilitate analysis for any reader interested in tracking down the inter-
actions, the position of the first few orders of sidebands for the five largest amplitude spatial
frequency components has been marked in Fig. 4-59. Note that there is a definite scattering
maximum corresponding to the second harmonic of spatial frequency B.

Several points of interest should be noted in this data. All of these curves show the presence
of strong spectral components, and some of the strongest are present in all three cases (including
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the averaged profile). There is a slight shift in the exact spatial frequency from curve to ‘curve,
which may only be an indication that the zonal ridges which go to make up a spatial frequency
component are slightly elliptical, rather than circular, Note in particular the E component in
Fig. 4-58, which has a relatively high spatial frequency (0.22 cycle per inch, or roughly 17 cycles
per radius). This does persist through all three cases, and indicates that fairly strong high
spatial frequency irregularities can exist even when the mirror is polished with a single flexible
lap. Such zonal structure is usually attributed to the use of subaperture laps to polish aspheric
surfaces.
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SPATIAL DENSITY (ARBITRARY UNITS)
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Fig. 4-55 — Amplitude spectrum for wavefront profile averaged over zones
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Table 4-12 — ADE for the A.A.T. Radius Profiles 5A and 9, and for

a Perfect Lens With a Central Obstruction € = 0.324

zone perfect lens
e = 0.324
0-1 -0.175691
1-2 0.162340
2-3 -0.016152
3-4 0.011289
4-5 0.001120
5-6 0.002056
6-7 0.005453
7-8 -0.000684
8-9 0.002261
9-10 -0.000506
10-11 0.001071
11-12 0.001205
12-13 0.000165
13-14 0.000858
14-15 -0.000368 .
15-16 0.000672
16-17 0.000320
17-18 0.000321
18-19 0.000374
19-20 -0.000267
20-21 0.000480
21-22 0.000115
22-23 0.000292
23-24 0.000154
24-25 -0.000092
25-26 0.000295
26-27 ~0.000049
27-28 0.000314
28-29 0.000043
29-30 -0.000009
30-31 0.000187
31-32 -0.000070
32-33 0.000272
33-34 -0.000011
34-35 0.000045
35-36 0.000108
36-37 -0.000062
37-38 0.000225
38-39 -0.000034
39-40 0.000076
40-41 0.000051
41-42 -0.000042
42-43 0.000177
43-44 -0.000038
44-45 0.000090
45-46 0.000012
46-47 -0.000020
47-48 0.000131
48-49 -0.000031
49-50 0.000092
REPRO;
DUCIBL
o LITY Op 7
RIGINAL p4gp IS%%HE
S POOR_

radius
5A

-0.298612
0.142927
0.009363
0.026041
0.014215

-0.002934
0.004631
0.011390
0.006046
0.005727
0.010052
0.002579
0.003214
0.004877
0.003248
0.005131
0.004691
0.004686
0.004215
0.002723
0.004381
0.002373
0.000209
0.000320
0.000737
0.003502
0.001506
0.003123
0.005664
0.001984
0.000535
0.000521
0.002079
0.001795
0.000292
0.000151
0.000425
0.000934
0.000347
0.000257
0.000177
0.000105
0.000340
0.000060
0.000118
0.000214
0.000230
0.000229
0.000039
0.000280

radius

-0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.

9

542428
140169
078501
072866
069280
021566
053941
032721
008297
004830
000809
003003
006676
002442
003151
002024
000061
000345
000049
000204
000332
000097
000054
003375
004545
001292
003070
004029
002998
001712
002373
002267
001268
000535
000785
002465
001959
000422
000191
000281
001103
000607
000254
000504
000426
000255
000130
000088
000267
000120
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4,7.5

Effective Radiance Plots

The PSF data presented in Section 4.7.3 is all in normalized optical units, For comparison

of performance at different wavelengths, effective radiance plots are more useful, giving the
effective radiance and encircled energy as a function of image radius in arc-seconds. Six such
curves are presented in Figs, 4-60 and 4-61 for wavefront radius profiles 5A and 9, at the pre-
viously specified wavelengths, A stellar magnitude of 10 was selected to define the effective

radiance in magnitudes per square arc-second. The curves may be scaled appropriately for other

stellar magnitudes.

Only one comment will be made here concerning the results shown in these figures. It is

interesting to note that if one were to define image quality in terms of the diameter blur circle
containing roughly 95 to 96 percent of the energy in the point source image, the diameter in arc-
seconds would be very nearly the same at all three wavelengths.
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4,8 SIMULATED LST WAVEFRONT

Wavefront profile data for the A.A. T. primary mirror arrived before the curve-fitting
option had been added to GASPR. An early attempt at fitting one of the radius profiles (the
averaged profile) by hand was made using sums of cosine phase gratings and Gaussian profile
ridges. The attempt was successful, and produced results comparable to those obtained later
with the curve-fitting option. We have revived this hand-fit model, with minor modifications, to
simulate the type of wavefront error which might be expected from the LST (as much as this is
possible with a rotationally symmetric wavefront,) Thus the larger scale wavefront irregularities
in this model are similar to those found in a real telescope mirror. The only significant differ-
ence between this model and the A.A.T. profile from which it is derived lies in the addition of a
high spatial frequency random component representing small irregularities of too high a spatial
frequency to show up in the A.A.T. data.

Table 4-13 shows the basic input data used to define the simulated LST wavefront, scaled to
the three indicated wavelengths. The scale factor was selected to give an rms wavefront error
of 0.050 wave at 632.8 nanometers. This scales to 0,097 and 0.260 wavelength at 325 and 121.5
nanometers, respectively. The telescope has a central obstruction of diameter ratio 0.32.

The RAND term defines the high spatial frequency component and is intended to simulate
surface roughness. The rms wavefront error of 0.005 wave at 632.8 nanometers corresponds to
a mirror surface irregularity of 15.8 A rms (31.6 A rms on the wavefront), which would represent
a very smooth surface, if the characteristic lateral dimensions were small enough, True surface
microstructure has lateral dimensions on the order of a few wavelengths. The sample point spac-
ing for RAND is 0.006 of a radius, or 7.2 to 9 millimeters for the 2.4- to 3.0-meter aperture being
considered. The spatial frequency bandwidth of the RAND component is thus far too small to
accurately represent real microstructure. The resultant errors will be in the angles at which
scattering occurs, not in the total scattered light; however, total scattered light is proportional

to the rms wavefront error,

Figure error is represented by the first two GAUS terms coupled with the 1.0-cycle-per-
radius COSF term. The 17.05-cycle-per-radius COSF term in brackets represents a visibly
prominant harmonic component which was apparent at zone heights of 0.45 and 0.75 in the A,A.T.
profile. The rest of the Gaussian ridge terms were used to fit individual bumps and dips in the
original wavefront. (Note: The original hand-fit was done prior to computing the amplitude spec-
trum shown in Fig. 4-55. It is interesting to note that that figure shows prominent peaks at 1.4
and 17.1 cycles per radius.)

Fig. 4-62 shows the wavefront profile and * Autocorrelation function for the simulated LST
wavefront at 325 nanometers. Figs. 4-63 and 4-64 show the PSF and MTF curves for all three
wavelengths in normalized optical units. These are similar to the corresponding curves for the
A.A.T. mirror. A comparison of Figs. 4-52c and 4-63c illustrates the changes caused by addition
of the high spatial frequency RAND component,

To compare performance at different wavelengths, it is desirable to plot the PSF in the
form of effective radiance versus radius in arc-seconds, and to plot MTF as a function of spatial
frequency in cycles per millimeter or cycles per arc-second. We also wish to compare perfor-
mance of the 2.4-meter and 3.0-meter aperture telescopes. Figs. 4-65 through 4-67 show the
effective radiance plots at three wavelengths for both telescopes, paired by wavelength, Fig. 4-68
shows the MTF at each wavelength, with separate spatial frequency scales for each telescope.

The differences between the two telescopes are purely ones of coordinate scale factors,
speaking in terms of the plots. The more interesting variations are a function of wavelength.
Note, for example, that the radius for 96 percent encircled energy is roughly the same at all
three wavelengths, being 0.35 arc-second for the 3.0-meter telescope and 0.45 arc-second for the
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WAVL 682.8 NM

Table 4-13 — Inputs to Generate Simulated LST Wavefronts

RAND 233425 0.005 SQUA 0.01

GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS

COSF

"COSF

0.75
0.25
1.02
0.44
0.56
0.68
0.53

0.48

0.170

0.026

GAUSF 0.45

GAUSF 0.75
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-0.

0.

-0.

-0.

17.

1.

111 0.25

085 0.25

060

026

.034
.017
.026
.017
.026
.021

.0

05

0

0.5

0.

0.

11

05

.04
.05
.04
.02
.01
.03

.5708

.05

1

1

WAVL 325.0 NM

RAND 233425 0.010 SQUA 0.01

GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS

COSF

"COSF

0.75
0.25
1.02
0.44
0.56
0.68
0.53
0.48
0.71
0.84

0.331

0.051

GAUSF 0.45

GAUSF 0.75

-0.216
0.166
-0.117
-0.051
0.066
-0.033
0.051
0.033
-0.051
-0.041

1.0

17.05
1.0

0.5

0.
0.
0.

0.

0.
0.

1.5708

0.

25
25
11

05

.04
.05
.04

.02

01

03

0

0.2

0.

05

1

1

[ 3o

WAVL 121.5 NM

RAND
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS
GAUS

COSF

COSF

233425 0.026 SQUA 0.01

0.75
0.25
1.02
0.44
0.56
0.68
0.53
0.48
0.71
0.84

0.885

0.135

GAUSF 0.45

GAUSF 0.75

-0.578
0.443
-0.312
-0.135
0.177
-0.089
0.135
0.089
-0.135
-0.109

1.0

17.05
1.0

0.5

0.25

0.25

0.11

0.05

0.04

0.05

0.04
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0.01

0.03

1.5708
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Fig. 4-65 — Effective radiance plots for 3.0- and 2.4-meter telescopes at

2 = 632.8 nm
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2.4-meter telescope. Note also the remarkable similarity between the MTF’s at 632.8 and 121.5
nanometers. The nominal cutoff frequencies for the 3.0-meter telescope are 23.0, 44.8, and 119.7
cycles per arc-second at 632.8, 325, and 121.5 nanometers, respectively. The apparent cutoff

of the 121.5-nanometer MTF at 23 cycles per arc-second is a function of wavefront error. So too
is the shoulder in the MTF at 14 to 15 cycles per arc-second, although it looks very much like the
shoulder in the 632.8-nanometer MTF, which is due to the central obstruction. The similarity

in these MTF’s may be useful. A TV sensor designed to exploit the optical system resolution to
its maximum at 632.8 nanometers will be nearly optimally coupled at 121.5 nanometers (assuming
it has adequate spectral coverage). Below 10 to 12 cycles per arc-second, the performance is
rather similar at all wavelengths. Only the tail of the MTF is extended greatly at 325 nanometers.

|

An MTF of 0.10 is sometimes used to indicate the maximum possible spatial frequency that
can be resolved in practice. Table 4-14 summarizes the 0.10 modulation spatial frequencies for

both telescopes.

!

Table 4-14 — Spatial Frequency at Which MTF = 0.10 for 2.4-Meter
and 3.0-Meter Simulated LST’s (cycles per arc-second)

I

Fraction of
A, nanometers 3.0-Meter 2.4-Meter Cutoff

632.8 18.4 14.7 0.80
325 33.9 27.1 0.76
121.5 16.5 13.2 0.14

4.9 STATISTICAL MODELS FOR RIPPLE AND FIGURE ERROR

The analyses of the preceding sections have been of a deterministic nature, using specific
wavefronts to calculate specific PSF and MTF curves. Deterministic analyses can produce
accurate results for the specific cases analyzed, but there is some question as to the validity of
using one specific example as an indication of the performance to be expected from other exam-
ples. Different optical systems are bound to produce wavefront irregularities which differ in
structural details. Thus in using a specific wavefront to predict expected performance from a
different optical system, there is always a strong chance that the choice of model wavefront is

inappropriate.

]

1
i i

"

In general, optical analysts prefer to use statistical models, since these are presumed to
define the average performance of a large number of cases. Thus the chance of picking a singu-
larly inappropriate model is presumed to be smaller. This is not the case if the statistical model
is based on an inappropriate statistical foundation, however. There is mounting evidence that the
statistical model based on a Gaussian autocorrelation function, which is commonly used in optics,
is not rigorously valid, and may be a poor approximation for some applications. - Of particular
interest to this study, the Gaussian autocorrelation function implies that the wavefront it repre-
sents has little or no high spatial frequency irregularities. Thus Gaussian autocorrelation func-

tions are singularly inappropriate in a study of ripple and surface microstructure.

1

The complete statistical model we refer to is based on the MTF degradation function of
Eq. 1. The underlying assumption is that the MTF degradation due to random wavefront error,
T, is independent and separable from the MTF degradation due to the finite pupil size and sys-
tematic aberrations. Thus if T, is the perfect lens MTF (we generally ignore the systematic
aberrations as being too small in LST-type telescopes) the system MTF is given by

0

T(v) = Ty(v) x T(V) (40)
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T, is then defined by Eq. 1, coupled with a Gaussian autocorrelation such as that of Eq. 2. The
attraction of this model is its mathematical simplicity. We have used it extensively ourselves, to
good advantage, in analyzing image quality criteria for the LST®,

Eq. 40 has been proven valid by E. L. O’Neill’. In the same reference he has derived
Eq. 1, in slightly different form, based on the assumption that the random wavefront irregularities
have a Gaussian height distribution, There is no implicit assumption as to the shape of the auto-
correlation function in that derivation, but a Gaussian shape is usually assumed for reasons of
convenience. The assumption of Gaussian height distribution appears valid, and therefore Eq. 1
should be reasonably accurate, Indeed, Schwesinger? has shown it to be a good numerical approxi-
mation for small wavefront errors even when the height distribution departs radically from
Gaussian. (He gives the corresponding equation for a triangular height distribution in the appen-
dix to his article and compares numerical values for different amounts of wavefront error,) We
have shown evidence of the validity of Eq. 1 for cosine phase gratings of small phase amplitude
in earlier sections. Thus, questions of validity are tied entirely to the autocorrelation function.

The original treatments of random wavefront error arose out of a study of the propagation
of plane wavefronts through the turbulent atmosphere, and this may be part of the reason the
Gaussian autocorrelation function was so easily accepted. In treating random surface irregulari-
ties on telescope mirrors, the atmospheric turbulence models were adapted without significant
change. But atmospheric turbulence and mirror surface irregularities differ in two important
respects. First, atmospheric turbulence varies with time, and the long exposures of astronomy
average the effects over many changes in the wavefront irregularity function., Thus, ensemble
averaging should be a legitimate model. A mirror surface represents a fixed wavefront irregular-
ity function, however, and it is not clear that models based on ensemble averaging are legitimate,
Second, the wavefront irregularities introduced by atmospheric turbulence of the type encountered
in astronomy are free of very high spatial frequency components, This is definitely not true of
mirror surfaces where the characteristic lateral dimensions of surface irregularities may range
from large fractions of an aperture diameter down to small fractions of a wavelength.

In previous sections we have shown through the * Autocorrelation function how non-Gaussian
the autocorrelation function can be, even for Gaussian smoothed random functions having rotational
symmetry. In this section, we will examine the nature of the autocorrelation function in more
detail. First, we will consider some of its fundamental properties, related to the form it should
take for mirrors. In this regard, we will make extensive reference to the paper by Schwesinger
cited above. (Note: An English translation of this paper will be found in Appendix A.) Second, we
will look at a number of real and generated two-dimensional and rotationally symmetric auto-
correlation functions. Since these are calculated from measurements passing only low spatial
frequency components, we will discuss the effects of high spatial frequency components using the
* Autocorrelation functions as examples. Third, both our deterministic and statistical models
are rotationally symmetric. We will therefore give some attention to the degree of variation from
the performance predicted by these models to be found in real telescopes, where the wavefront
error is far from rotationally symmetric,

The shape of the autocorrelation function for real telescope mirrors, and for mirrors in
general, is a subject being actively pursued by a number of people, most of whom will be identi-
fied in the course of this section and Section 5, Although a number of the properties of the real
autocorrelation functions are now evident, there still exists no specific agreed upon model. The
material presented in this section was collated too late to have an impact on the computer pro-
gram models we have generated, which therefore took the deterministic route of GASPR. We
hope this material will contribute to generating a more complete statistical model for future use,
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4.9,1 General Properties of Wavefront Autocorrelation Functions

Most early analysis of random wavefront error was done in terms of a deformed plane
wavefront of infinite lateral extent, and this forms a convenient point of departure for our dis-
cussion, The random wavefront error represents departure from flatness in the phase front of
this plane wave. We represent this wavefront error by a scaler optical path difference function
f(x, y), which measures the distance in wavelengths by which the phase front leads or lags behind
the reference plane. The OPD function is defined to have a zero mean, f(x, y) = 0, by positioning
the reference plane such that

f f f(x, y)dxdy = 0 (41)

The autocorrelation function for this wavefront is

o0

JT f(x, y)(x — u, y = v)dxdy

We will generally use the normalized form,

0

ff f(x, y)f(x — u, y - v)dxdy
ff f%(x, y)dxdy

K(u, v) = (42)

and it will be convenient to convert to polar coordinates for comparison to Schwesinger’s results:

2r »

f f - Hp, ¢)o -1, ¢ —plodpde

K(r, p) = —— (43)
J;

T o0

f f(p, dp)pdpd¢
0

Returning to the OPD function, its Fourier transformation is

F(vy, Vy) = ff f(x, y) exp [-2mi(vyx + Vyy)]d.xdy (44)
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From Eqgs. 41 and 44 then, it follows that

©o

F(0, 0) = ff f(x, y)dxdy = 0 ‘ (45)

The energy density spectrum P(uvy, vy) is given by
Py, vy) =—1-— [Fv,, vy)!? (46)
Xy 27 X"y

Thus if f(x, y) = 0, it follows from Eqs. 45 and 46 that P(0, 0) = 0,

Now Lee? shows that the energy density spectrum and the autocorrelation function are
Fourier transform pairs,

o0

P(vy, vy) = 51; ff K(u, v) exp [-27i(vgu + vyv)]dudv (47

-— OO

From Eqs. 45, 46, and 47 then, it follows that

P(0, 0) = % ff K(u, v)dudv = 0 (48)

or in polar coordinates,

2mr oo

f f K(r, p)rdrdp = 0 (49)

0 0

This result is identical to that which Schwesinger (page A-14) attributes to Fried!, except
in that both have integrated in p to give a zonally averaged autocorrelation function. The important
inference to be drawn from these derivations is that a zero mean OPD function implies that the
integral under the autocorrelation function is also zero. Since all quantities in the integral are
positive except K(r, p), then K(r, p) must have both positive and negative values, and therefore
cannot be represented by a Gaussian function.

E. L. O’Neill (personal communication) has pointed out that there are some classic examples
in communication theory which appear to violate this condition, e.g., the “random telegraph” signal
in which a signal switches instantaneously from +1 to -1 at random intervals, with the long term
average being zero. Textbooks!! give a triangular (all-positive) autocorrelation function for this
example, and show P(0) to be equal to 1.0. The problem appears to lie in the fact that the Fourier
transformation calculations are carried out for the ensemble functions, and not for the function
itself, If any finite section of the random telegraph signal pulse train is itself autocorrelated, the
autocorrelation function will have both positive and negative values, and the ensemble analysis will
brak down. In fact, we can state the condition more formally: If T is the total sampling interval
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and t; the correlation interval, then solutions approximating the ensemble average results will be
approached only as T/te = . Conversely, the statistics break down completely when T/tc - 1.0.

The wavefront errors introduced by surface irregularities in a telescope mirror are obvi-
ously stationary with time, and ensemble averaging can be approached only by averaging the wave-
front irregularities of a large number of mirrors, The autocorrelation length L is generally a
moderately large fraction of the pupil diameter Dp, Dp/ L seldom exceeding 3 to 10 in real tele-
scope mirrors. Because of this, autocorrelation functions generated for individual wavefronts are
likely to depart significiantly from any true ensemble averaged autocorrelation function, For such
a bounded waveform, including bounded random telegraph signals, Eq. 48 or 49 should apply. In
fact, deviation of the integral (49) from zero is more likely to be an indication that Dp/ L is too
small for the statistical model to work properly,

When dealing with a finite sample of a random wavefront bounded by a circular pupil, some
special considerations enter into the definition of the autocorrelation function, These are illus-
trated in Fig. 4-69, which also defines the coordinates used in Egs. 42 and 43. The product
f(x, y)f(x ~ u, y — v) exists only within the shaded region where the pupil and displaced pupil over-
lap. Thus the value of the unmodified autocorrelation function decreases in proportion to the
normalized transmitting area of the pupil as r is increased from 0 to 2R, even in the absence of
wavefront error. We compensate for this by dividing the right side of Eqs. 42 and 43 by the
normalized pupil transmittance. This function is identical to the perfect lens MTF Ty, where,
for an unobstructed lens

THvy) = % [arc cos v, — vy sin (arc cos 1y)] (50)

v being the normalized spatial frequency.

At this point, several comments on notation are in order. Schwesinger uses a normalized
form of the displacement radius using R as the normalization factor. Thus 0=<r <20, Inthis
report, we use a normalized spatial frequency i = v/ vy, where v, = Dp/A, Dp being the pupil
diameter. Thus 0 < vy < 1.0. These coordinates are interchangeable, in that numerically, r =
2v,. In the remaining discussion of the autocorrelation function we will refer usually to the
zonally averaged autocorrelation function K(r) = [K(r, p)]p. Note that this is numerically equiva-
lent to using the zonally averaged OPD function f(p) = [f(p, ¢)]p in Eq. 43.

The compensated form of the autocorrelation function in Schwesinger’s notation thus be-
comes

f f(p)f(p - r)pdp
K(r) = (51)
TI(r/Z)J‘ f(p)pdp
0

In the notation of Eqs. 1 and 2,
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Fig. 4-69 — Pupil displacement coordinates for computing autocorrelation

function of OPD function over pupil of telescope
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f f(p)i(p ~ 2uy)pdp
Byylv) = ———— (52)
Ty ”“)J" f4p)pdp
0

In performing the integral of the volume under the autocorrelation function for a bounded
wavefront, Schwesinger introduces a weighting function ¢(r) (see Eq. 15, Appendix A). He claims
that the bounded wavefront equivalent to Eq. 49 is

2
[ ¢(r)K(r)dr = 0 ) (53)
) 0 ‘
In examining his weighting function ¢(r), we have noted thét
P(2vy) = 4T((vp)n (59)
Thus, Eq. 53 is equivalent to

1

BI &13(vp)Tvp)vpdyy = 0 (55)
0

This is the zed integral discussed in Section 4.1.2. (In the computer calculation, we ignore the
factor 8.)

[1t is interesting to compare this equation to Eq. 4-5 of reference 6, which gives the Strehl
definition @ for rotationally symmetric MTF’s: In the present terminology, using the normalized
spatial frequency,

Un
= Bf T ,(vn) Tr(vp) vndy (56)
0

The similarity is striking, but probably not too significant. The Strehl definition equals 1.0 for a
perfect lens. Eq. 1 shows that this can occur if w = 0 or if ®;;(y) = 1.0 for all ;. In practice,

the latter will occur only when w = 0, and may not occur then, It implies that the correlation length
is very long with comparison to the pupil diameter, Note that if &,,(1vy) = 1.0 for all iy, Eq. 55
equals 1,0, This is equivalent to the earlier statement that when T/t; ~ 1.0, the statistics break
down. Thus the zed integral = 0 only if the autocorrelation length is a reasonably small fraction

of the pupil diameter.]

Proof of the validity of Eqs. 49 and 55 would constitute evidence that the Gaussian autocorre-
lation function is formally unacceptable. There may exist conditions under which the Gaussian
autocorrelation function is a satisfactory and useful approximation, however, To examine this
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possibility and to test Eq. 50, we must look at the autocorrelation functions for real mirrors and
for generated wavefronts,

4.9.2 Autocorrelation Functions for Generated Wavefronts and Real Mirrors

Two forms of generated wavefronts are used in computing autocorrelation functions here,
but both start with a random number table and a smoothing function. One is the rotationally
symmetric wavefront of GASPR, which produces the *Autocorrelation function. The other pro-
duces a wavefront irregularity function varying in two dimensions, defined by a 20- by 20-point
data matrix. This wavefront is autocorrelated by carrying out the integral (Eq. 52). Two ortho-
gonal sections of the two-dimensional autocorrelation function are calculated by displacing the
data matrix incrementally in the x and y directions. The model wavefront is then rotated 15
degrees with respect to the data point matrix, and the process is repeated. When a complete set
of profiles spaced by 15 degrees has been obtained, they are averaged by hand. The same tech-
nique was used in reference 6 to obtain autocorrelation functions for real mirrors; this will be
shown below, o

Since we will compare these autocorrelation functions to the Gaussian autocorrelation func-
tion, we should cite the Gaussian autocorrelation function forms used in our principal references:

®;(vy) = exp (-2Ngvy?)  (reference 6) (57
K(r) = exp (-r%/1? (Schwesinger) (58)
®,,(vy) = exp (=4v,® ¢ (GASPR notation) (59)

¢ and c are the normalized autocorrelation lengths in each notation, and they are numerically
equal,

¢ = ¢ = 1/(VZ Ng) (60)

The normalized autocorrelation lengths are so defined that when r = £ or vy = c/2, the autocorre-
lation function = 1/e = 0.3679. '

Fig. 4-170 shows five autocorrelation functions for five two-dimensional wavefronts of corre-
lation length ¢ = 0.3, each generated from the random numbers table starting with the same seed.
Each curve represents the average of a two-dimensional autocorrelation function. To indicate the
degree by which the latter varies from its mean, we have plotted the standard deviation curve for
each case in Fig. 4-T1, along with an average of the five standard deviation curves, In Fig. 4-172,
the average of the five autocorrelation curves is plotted with its standard deviation curve. The
corresponding Gaussian autocorrelation curve for ¢ = 0.30 is included for comparison,

Three conclusions can be drawn from this data: First, the variance within the individual
autocorrelation function is considerable, as is the variance between different wavefronts which
nominally have the same statistics. Second, all cases show both positive and negative values,
although averaging over many cases seems to reduce the maximum negative excursion of the curve
somewhat. Third, the Gaussian model seems to match the shape of the lowest frequency portion
of the real autocorrelation function. This latter can be attributed in part to the absence of high
spatial frequency components in the wavefront model.

In Fig. 4-73 we show autocorrelation functions for three different correlation lengths, each
the average of three two-dimensional functions. The same three seeds were used in generating
each set of wavefronts, Again, note that the lower spatial frequency portions of the curves look
Gaussian in shape. (This is not too apparent for ¢ = 0.1, where the 0.05 spatial frequency sampling
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increment is too coarse to resolve details.) The most significant thing to note is the manner in
which the magnitude of the negative excursion varies with correlation length, If Schwesinger’s
form of the zed integral is considered along with the shape of his weighting function ¢(r) (Appendix
A, Fig. 3), it will be seen that the autocorrelation function must vary with correlation length in
this manner if the zed integral is to equal zero.

The zed integrals for these three autocorrelation functions and the corresponding Gaussian
autocorrelation functions are given in Table 4-15, along with the zed integrals for the nine two-
dimensional autocorrelation functions used to generate the averaged curves. Several conclusions
can be drawn from this data: First, the value of the zed integral decreases as c decreases. Below
¢ = 0.3, however, this variation with ¢ seems to be of a magnitude comparable to the variance be-
tween different individual samples. Second, the zed integral for the Gaussian autocorrelation
function is much larger than that for the real autocorrelation functions, It too decreases as ¢
decreases, and it is evident that at some point ¢ < 0.1, it will be reduced to within the statistical

variance between real samples,

To examine the effects of higher frequency components, we must use the *Autocorrelation
function output of GASPR. Fig. 4-74 shows the *Autocorrelation functions for five wavefronts
generated with the random wavefront option, all having a correlation length of 0.1 and a square
smoothing function, but each being generated with a different seed. The average of the five *Auto-
correlation functions and its standard deviation are shown in Fig. 4-75, along with the correspond-
ing Gaussian autocorrelation function,

Table 4-15 — Zed Integrals (Eq. 49) for the Two-Dimensional Autocorrelation
Functions Used in Generating Fig. 4-73 (Zed integrals for the corresponding
Gaussian autocorrelation functions are included for comparison)

c 1 2 3 Average Gaussian
0.6 0.0584 0.0064 0.0104  0.0256 0.2392
0.3*  0.0096 -0.0008 0.0064  0.0056 0.0728
0.1 -0.0024  0.,0052 0.0109  0.0040 0.0072

*Averaged over the five samples in Fig. 4-70, zed = 0.012.

This averaged *Autocorrelation function bears similarities to the corresponding two-
dimensional averaged autocorrelation functions. It has both positive and negative values, and it
tends to oscillate about zero at higher spatial frequencies. The calculations were made for w =
0.10 wavelength rms, which introduces some errors at higher spatial frequencies. (Among other
things, this drives the zed integral negative. Zed = —0.0238 for the averaged curve.) The most
significant difference from the previous examples is at low spatial frequencies, where the *Auto-
correlation function drops off considerably more rapidly than the Gaussian curve, That this is due
to the presence of higher spatial frequency components is borne out by the results discussed in

Section 4.4,

What of real mirrors? Figs. 4-76 and 4-77 show two examples taken from reference 6.
Three more examples are shown in Fig. 2 of Appendix A, All five show the autocorrelation func-
tion to have both positive and negative values, and to oscillate about zero at high spatial frequen-
cies. [Note that the autocorrelation function has been multiplied by Ty(vy) to damp down these
oscillations in Figs. 4-76 and 4-71.] Note that at low spatial frequencies most of these curves
fall off more rapidly than Gaussian, in spite of having been measured with a relatively coarse
sampling point spacing. This behavior is also apparent in the *Autocorrelation functions for the
A.A.T. primary mirror (Section 4.7.3), particularly in the case of radius 5A.
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We will show in Section 5 that the autocorrelation functions for surface microstructure are
also significantly non-Gaussian in character.

4.9.3 Deviations From Rotational Symmetry

The wavefront irregularity function of any real telescope will deviate from rotational sym-
metry. This is clearly evident from the A.A.T. primary mirror wavefront profiles, and is further
shown in the above discussion of the autocorrelation function. The question of the magnitude of
variance to be expected between the rotationally symmetric statistical models and real system
performance is being pursued by several workers. Barakat has published papers'®!® dealing with
the question, although not in terms readily applied to the present effort. E. O’Neill and others
(personal conversations) are actively pursuing the topic at various levels of effort, but have not
published results as yet. The most interesting and relevant recent paper is by D. Nicholsont?,
which shows variance in the MTF for lens models with two-dimensionally random wavefront
errors generated in a manner similar to that used in studying autocorrelation functions here.
Three.of his figures are reproduced in Fig. 4-78,

Performing variance analyses on the autocorrelation function and MTF is fairly straight-
forward. Extending this effort to the PSF is more difficult, and has not been done as yet. Hope-
fully, development of a valid autocorrelation function model including the effects of ripple will
help in this direction. The variance analysis of Nicholson uses a low spatial frequency bandpass
model of the wavefront, and therefore cannot deal with effects on any part of the PSF beyond the
first few rings. There has not been time to try any similar analysis using the rotationally sym-
metric GASPR model, and applying the results of analyses of multiple rotationally symmetric
wavefronts to variations from rotational symmetry is questionable. It is probable that any study
of asymmetric effects in scatter due to ripple will have to be done experimentally.
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5. WIDE ANGLE SCATTERING ANALYSIS

Theoretical and experimental analyses of scattering from surfaces have been performed
by a great number of workers studying different regions of the electromagnetic spectrum. Wave-
lengths studied have ranged from microwaves to x rays. The surfaces involved have included not
only man-made surfaces, but also the ionosphere, the surface of the ocean, and the surface of the
ground. The most prevalent theoretical models derive from radar studies involving the latter
three surface types.

Relatively little of the past work has dealt specifically with scatter from highly polished
optical surfaces. Recently, however, the needs of space borne astronomy and high energy laser
systems have generated interest in such scattering. Until quite recently, workers studying optical
surface scattering have adopted the theoretical models developed for radar scattering to explain
optical scattering. But these theoretical models face the same problem discussed in Section 4.9:
the surface irregularities are assumed to have a Gaussian autocorrelation function. Since this
is in fact not the case, the experimental facts do not agree well with the theory. This fact has
been disguised in part by the narrow range of angles over which optical scatter is typically
measured. The theoretical model might provide a rough fit over, for example, 5 to 20 degrees.
Most experimental measurements have tended to concentrate in this range, since experimental
difficulties are encountered at smaller angles, and larger angles are frequently not of great
interest. More recent measurements extend over a great enough range of angles to show up the
errors in the theory. Direct measurements of the autocorrelation function confirm this.

In this section of the report, we will concentrate almost entirely on the more recent experi-
mental results, and on empirical models used to represent them. A brief review of the older
theory based on a Gaussian autocorrelation function will be given for purposes of comparison.

The two principal sources of direct scatter measurements we will use are the star profiles
calculated by Ivan King'® and John Kormendy'®, and the scatter coefficient measurements of

Roland Shack and Micheal DeBelll”. Other data will be referenced as cited. We will develop

a scatter coefficient model based on the Arizona data and use it to generate a star profile model.
This latter will be compared to the King/Kormendy data and will be used as the basis of a computer
program to calculate the contribution to the background image irradiance of scattered starlight.
Some results of analyses with that program will be included.

5.1 BECKMANN MODEL FOR SURFACE SCATTERING

Perhaps the most widely used models for scattering from surfaces are those of Peter
Beckmann.!® * Beckmann generally treats the surface as a perfect conductor with surface
irregularities which can impose phase errors on wavefronts reflected from it. The surface can
then be treated as a spectrum of phase gratings, and the scattered light as a spectrum of plane
waves diffracted by them. Beckmann describes a number of models for the phase gratings, includ-
ing one random model based on Gaussian statistics using a Gaussian autocorrelation function.

We will examine this model, using the formulation of Smith and Hering.?°
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Smith and Hering define a bidirectional reflection coefficient which describes both the
specular and diffuse reflectivity of the surface.

foa(6’, 85 8, ¢) = f5p(60U(8, 075 6, ¢) + fgc(8”, 975 6, ¢) (61)

where 0/, ¢’ = direction of incident ray in polar and azimuth angles
8, ¢ =direction of reflected “ray”
f,q() = total bidirectional reflectance
fgp(6’) = specular component
fge() = scatter component
U() = 1.0 in specular direction and 0 in all other directions.

The specular component is given by
fsp(6") = exp {-[47(0/2) cos 6’1} (62)
where ¢ = the rms height of the surface irregularity on the mirror (not on the wavefront).

The diffuse component is given by
27(c/2)?B exp {-[(c/ME*}

m? cos 0 cos 6’

fgc(6, ¢'; 6, ¢) =

_9.2 2
S 25200
M=1

where m = rms slope = V2(0/a)
a = correlation length
1 + cos 6 cos 6/ + sin 6 sin 6/ cos (¢’ — ¢) *
cos 6 + cos &’
E = 2n(cos 6 + cos 6')
H =sin? 8 + sin® 6’ + 2 sin 6 sin 6’ cos (¢’ — ¢)

For normal incidence, B = 1.0, E = 27(1 + cos 6), and H = sin’? 6. Eqs. 62 and 63 reduce to

B =

fsp(e) = exp[-4n(c/N)?] (64)
and
_2m(0/2)? exp {~[2n(c/N) (1 + cos O}
fsc(6) = m® cos 0
[27(c/A) (1 + cos f?)l2
M(M!)
M=
20502
xp { [2n (oléhilsm 9]} (65)
5-2

I

o

€

I
I,

gl

4l

wil

i

1
i

il i | [

(A

Qi

i
il

L

@ig



Note that Eq. 64 is one form of approximation for calculating the Strehl definition (see reference
6, page 4-3).

Eq. 65 has been used to compute the scatter coefficients for the case ¢ = 20 Angstroms and
a=21/2, A, 2\, and 4\. The results are shown in Fig. 5-1, which plots the log of fg¢(6) versus
log sin (6). Note that all four curves have the same general form, a long flat portion at small
angles, plus a strong roll-off at large angles. Changing the correlation length a increases the
scatter coefficient at small angles and shifts the shoulder of the curve toward smaller angles.

It is generally assumed that the correlation length for polished mirror surfaces is in the
region of one wavelength. Since such mirrors tend to have scatter coefficients which vary as the
inverse square of sin 8 in the vicinity of 5 to 10 degrees, than in the absence of measurements
outside this range of angles, the Beckmann theory seems to fit the data if a = 1 to 2 wavelengths.

In Fig. 5-1, we have added two curves taken from the next section of this report. Although
neither represent scatter measurements over the entire range of angles plotted, each implies
that the other can be extrapolated as shown. Neither of these curves can be fit by Eq. 65 for any
combination of ¢ or a. We must therefore assume the Beckmann theory to be inapplicable to
scattering from well polished mirrors.

5.2 DATA FROM THE LITERATURE

There is very extensive literature on scattering theory and scatter measurements. Most
of it is irrelevant to our purposes and will not be cited. Rather, we will cite only that data which
applies to the topics under discussion. This will fall into three categories: first, the King/
Kormendy star image profiles, which are unique in giving the effective point spread function
for a complete system from the center of the image out to 5 degrees; second, direct measure-
ments of scattering at angles greater than about 1 degree; third, measurements of surface
irregularity and its statistics.

5.2.1 King and Kormendy Star Profile

In 1971, King!® published the composite profile of a star image shown in Fig. 5-2. This
was taken from microdensitometric tracings of star images on film from a number of separate
telescopes, including the 60-inch Cassegrain at Mount Wilson and the 48-inch Schmidt telescope
at Mount Palomar. The curves cover data from substantially less than one arc-second to about
5 degrees. The ordinate is surface brightness or effective radiance in magnitudes per square
arc-second for a zero magnitude star.

Two aspects of the data are particularly interesting: first, an extensive section of the
profile follows an inverse square dependency on angular radius; second, the data from a number
of different instruments of different design and different aperture diameter follow roughly the
same star profile. The inverse square characteristic eliminates diffraction at the pupil from
consideration as the source of the profile, since diffraction at a circular aperture has an inverse
cube dependancy on angular radius. The fact that the same curve applies to a number of different
telescopes indicates that design type and aperture diameter are of secondary importance in
defining the star profile.

King made no significant attempt to define the source of this shape, and this is indeed a
difficult problem. The complete system involves transmission through the turbulent atmosphere,
diffraction by the telescope aperture, scatter at several optical surfaces, and scatter within the
film emulsion. The shoulder toward the center of the curve is without doubt due to atmospheric
turbulence, but beyond that, explanations are speculative.

Kormendy'® did a far more detailed analysis of the star image profile for the 48-inch
Schmidt telescope at Mount Palomar, with the intent of providing a radiometric calibration for
the telescope. His data, shown in Fig. 5-3, plots surface brightness in magnitudes per square
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Fig. 5-1 — Beckman theory scatter curves for different correlation lengths,
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Fig. 5-2 — Surface brightness, in magnitude per square second, in the image

of a star of magnitude zero. Open circles are derived from 60-inch Cassegrain
images, closed circles from diameters of NPS stars on the Palomar Observa-
tory Sky Survey (POSS), and crosses from other stars on POSS. Straight line

is inverse-square law found by de Vancouleurs. Triangles are from sky bright-
ness near the sun (Ref. 15).
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radius. The dashed curve is due to King (1971) (Ref. 16).
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arc-second against the log of the image radius in arc-minutes. The dashed line is from King’s
data, and the solid line is Kormendy’s new curve. There are two anomalies in the latter, one
due to a ghost image produced by the Schmidt plate, and the second (at 1 arc-minute) a ghost
image produced by a filter in front of the photographic plate. Kormendy’s data agrees well with
King’s data at smaller angles, but shows a Iower slope at large angles.

Kormendy makes a more detailed attempt at explaining the shape of the curve. He dismisses
diffraction at the aperture as a possible cause, indicating that it will be well below the plotted
curves. Scattering in the emulsion of the photographic plate may account for the change in slope
inside of 20 arc-seconds, but cannot explain the power-law part of the curve. He also gives
reasons for dismissing scattering from atmospheric haze. This leaves scattering from optical
surface irregularities and dust in the telescope as the most probable cause. We will return to
considering this possibility after we have generated a star profile model based on mirror surface
scattering.

5.2.2 University of Arizona Scatier Measurements

The data published in reference 17 represents perhaps the most comprehensive attempt
to measure scatter from mirror surfaces of differing roughnesses that is presently available.
Measurements were made on 2 number of different samples of glass and fused silica polished
by a number of different techniques. Surface finish ranged from ground glass to superpolish.
Scatter angle (normal incidence) ranged from roughly 2 degrees out to nearly 90 degrees. (There
is some question about the validity of the data below 5 degrees, however, due to some extraneous
background contribution.)

Fig. 5-4 is typical of the output of these measurements. The uppermost curves are for
ground glass samples. The remaining five curves are for glass and fused silica samples of
different surface roughness. Table 5-1 summarizes some of the data about them, including
surface roughnesses and scatter coefficient p g(a) for @ = 5.74° (sin @ = 0.10). It should be noted
that the surface roughness was estimated visually from FECO interferograms and its accuracy
is highly suspect. Note also that this data is for the roughness of the wavefront, not the mirror
surface.

This data is used as the basis for the scatter coefficient model developed in Section 5.3,
which follows a suggestion on page 30 of reference 17. This data will be discussed further at
that time.

Table 5-1 — Scatter Data from University of
Arizona Measurements (Reference 17)

Sample crw(f\) W= ow/?t pglay)*

EDF 3-11 150 0.0292 1.43 x 1072
222 120 0.0233 1.22 x 1073
EDF 3-4 25 0.0049 8.42 x 1074
247 40 0.0078 8.42 x 1074
236 10 0.0019 1.75 x 1074

*sin ay = 0.10
A = 514.5 nm

5.2.3 Michelson Laboratory Data

Bennett’s group at Michelson Laboratory, Naval Weapons Center, China Lake, California
is one of the most active in studying scattering from mirrors. Although much of their early work
tended to be involved with variation in specular reflectivity with roughness? or total scatter,
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some of their recent work is of more direct interest to this study. In particular, they have
developed a FECO interferometer which they have used to measure the surface microstructure
of mirrors, from which they have computed the statistical characteristics of the surface irregu-
larities.?® 2! Figs. 5-5 to 5-8 represent data taken from these measurements. The important
points to note from this data are that both height and slope data are Gaussian, while the auto-
correlation function is non-Gaussian. These examples are typical of their other data as well
(see references 23 and 24).

It is interesting to compare the autocorrelation function in Fig. 5-5 to Fig. 4-29c. They
are rather similar, particularly in terms of their behavior near the origin. In this region,
Bennett’s data tends to fit a linear exponential curve, although that fit breaks down where the
autocorrelation function goes negative. These autocorrelation functions are probably indicative
of a very broad spatial frequency distribution in the surface irregularities.

Work is continuing at Michelson Laboratory to attempt to fit a scatter function to this auto-
correlation function. No satisfactory solution has been found as of this writing (personal com-
munication from J. Bennett).

5.2.4 Other Data Sources

Three other data sources are worth noting. Smith and Hering?® also measured surface
irregularities and computed the associated autocorrelation functions, with results similar to
Jean Bennett’s data given above. Their measurements were made mechanically, with a stylus,
and therefore are of comparatively poor lateral resolution. Jay Eastman?® has made measure-
ments of surface roughness with a scanning Fizeau interferometer. He shows the surface irregu-
larities to have an autocorrelation function which is approximately a linear exponential (see
Fig. 5-9). It should be noted that no attempt was made to define the correct zero height for this
function. The fact that C(s) in Fig. 5-9 is all positive is an artifact of the normalization technique.
Eastman’s work is worth noting here primarily because of his development of scanning Fizeau
interferometer, which is competitive in performance to the FECO interferometer. (See Section
7.2 and Appendix B for further discussion.)

The third data source of interest is a recent paper by Heinischzs, which discusses the effects
of dust and surface contaminants on the bidirectional reflectivity of mirrors. His measurements
are made at 10.6 micrometers, but the results are indicative of what can be expected at different
wavelengths. Fig. 5-10 reproduces his principal figure. Replotting the lower two curves in log-
log coordinates shows them to have straight sections varying in slope from about 1.6 to 2.8,
which is within the range indicated by Arizona data. The accumulated dust raises the scatter
level roughly 50 times and changes the slope of the scatter curve. Removing the dust restores
the original level of scatter almost completely.

5.3 SCATTER COEFFICIENT MODEL BASED ON EMPIRICAL DATA

The data on star profiles from King and Kormendy and the data from mirror scatter measure-
ments from the University of Arizona suggest that the scatter coefficient follows an inverse power
law over a considerable range of scatter angles. Thus a model using an inverse power law seems
reasonable. There are two endpoint conditions which deviate from this law, however. At 90
degrees, the scatter coefficient must go to zero via a cosine roll-off. Also, the inverse power
law cannot hold at zero scatter angle where it would be infinite. Thus a small angle roll-off is
also required. The complete model should have the general form shown in Fig. 5-11 when plotted
on log-log paper. This curve can be represented by an equation of the form

_ C; cos &
pgla) = H_Télz—s_inz_a)gn (66)
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Fig. 5-5 — Photograph, TV scan, and autocovariance function for a 29 A rms
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Fig. 5-6 — Height and slope distribution functions for the same potassium
chloride surface (after Ref. 23, 24)
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Fig. 5-11 — General form of empirical scatter coefficient o g(a)
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The units of p g(a) are steradians™!. Light is assumed to be normally incident. (Note: This model
is drawn from reference 17, page 30, equation 67.)

C, represents the value of the scatter coefficient at very small angles, o « a, C, is the
constant defining where small angle roll-off occurs. Numerically, C, = 1/sin? o, where o, is
the angle at which the asymptotes to the two straight-line portions of the curve cross. We might

therefore rewrite Eq. 66 as

_ Cysin® a,cos a
pgla) = (sin’ @, + sin® @)5”? (67)

In general, we will not be able to determine C; or @, very readily. In later analyses, we will
assume a value for @, generally an angle smaller than any we will use in practice. But if we
have one measured value of the scatter coefficient, p g(@;, ), measured at angle a; >, and
wavelength A, and if we know the slope s, then we can say that

C, sin® a, = p glay, N 8in® a,/cos @, (68)
Thus
__pgloy, M) sinS @y cos
Pgl@) = Tog a, (sin? @, + sint @)% (69)

In Section 4.2.4, we discussed how changing wavelengths changed the scatter function due
to a spectrum of small phase amplitude phase gratings. The change in scatter was due to two
effects, increase in the effective phase amplitude and decrease in the scatter angle for a given
spatial frequency phase grating, as wavelength decreases. The net result was the (4-s8) scaling

law of Eq. 35.
Now consider how these arguments apply to the scatter function model represented by
Fig. 5-11. First, as wavelength decreases, points in the straight-line portions should scale

upward according to Eq. 35. Second, as wavelength decreases, a, will become smaller. Thus
if we wish to know p g(@, 1) when we have measured data for p g(ay, »), we should rewrite Eq. 69

as:

_ (A/M)(S"“p (24, M) sin® @, cos @
Ps(a, A) = coS 0!1[(}t M)lzjam + sin? ;]BIT (10)

We have written a to indicate that this is the roll-off angle at A;.

Tt should be emphasized that these wavelength scaling rules are tied to the assumption that
the phase amplitudes of the wavefront irregularities remain small through the wavelength region,
and to the assumption that the features of the scatter function (slope of the straight-line portions
and the small angle roll-off) are a result of the spatial frequency distribution of the wavefront
surface irregularities. If the phase amplitudes of the surface irregularities become too large,
these assumptions break down due to interactions between different spatial frequency components.
The one-to-one relationship between spatial frequency components of the wavefront irregularity
function and features of the scatter function break down when sum and differencing of components
occurs, and when significant higher order teams show up. (See Figs. 4-56 through 4-59, Section
4.7.4, for examples). Thus, care should be taken in using this equation to scale scatter functions
into the far ultraviolet. If the total scattered light is more that a few percent of the light in the

point source image, these equations probably do not hold.
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Eq. 70 has been used to compute the curves in Figs. 5-12 and 5-13. Fig. 5-12 shows how
the choice of roll-off angle affects the scatter function curve. This has obvious implications
concerning total scattered light and will be dealt with below. Fig. 5-13 shows how slope s will
affect scaling of the scatter function with wavelength. The constants for the three different
scatter functions were selected to make them all equal at sin @; = 0.10 and X, = 0.60 micrometers.
It will be seen from the way the position of the intersection point for the three curves shifts that
the scaling consists of shifting the curves left a distance log (kz/ %) and upward a distance log
(A/X;)%. This follows directly from the change in scatter angle and phase amplitude for each
spatial frequency component of the wavefront irregularity function with the consequent scattering
of more light into a smaller solid angle, as discussed in Section 4.2.4. At any given scatter
angle, however, we see that wavelength scaling is strongly dependant on the scatter function slope
s, with the change being greatest for the smallest slope.

It is interesting to apply the two wavelength scaling rules of the above paragraph to the
infrared data from Heinisch?, To match the University of Arizona data!’, we must scale from
10.6 micrometers to 0.5145 micrometer. The data is shifted left in angle space by the scale
factor (0.5145/10.6) = 0.0485, and 1° becomes 2'54'". (This is a roundabout method for measuring
small angle scattering.) The scatter coefficient is scaled upward by a factor (10.6/0.5145)* =
1.80 x 10°. The results of this scaling are shown in Fig. 5-14 with some of the University of
Arizona data for comparison. A scatter function curve from Eq. 70 has been added. This was
given a slope of 2 and fit roughly to the scaled Heinisch data.

The mirror measured by Heinisch is described as a “high quality, low scatter electroless
nickel coated aluminum mirror,” but no data is given as to the rms deviation of its surface irregu-
larities. Therefore, the most we can say from Fig. 5-14 is that the scaled infrared scatter
coefficients are consistent with the University of Arizona data and the scatter function model
Eq. 70. This consistency is maintained over assumed slopes ranging from about 1.7 to 2.0, with
a slope of 1.8 matching the Heinisch data to sample no. 247.

Eq. 70 is the complete statement of the scatter function model we will use in analyzing wide
angle scattering. In most of the actual analysis, we will use somewhat simplified forms of the
model for convenience. We will generally assume that s = 2, except when specifically examining
the effects of slope variation, as in Fig. 5-13. In some of the star profile calculations below we
ignore the wavelength scaling of a; as well.

If we assume that s = 2, Eq. 66 becomes
pgla) = Cy cos a/(1 + C, sin’a) (71)

We wish to integrate Eq. 71 to determine the total scattered light (TSL) due to the wavefront
surface irregularities. Normalizing the integral to give TSL = 1.0 for a perfect Lambertian
reflector, for which p g(a) = (cos a)/n, we obtain

-2

27 a cos o da
TSL =122 Cif @ + Cpsin’ @) (72)
0

Eq. 72 is not an easy integral to solve analytically, but if two simplifications are made,
an approximate solution can be found. First, we use the asymptotic form of the scatter function:

pgla) =Cjcos o, a =a,

C, cos &
Ly COS &
Csinta’ 2™ %0 (73)
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!

Second, we transform the notation, setting x = sin @, and x; = sin &, The integral can then be
rewritten

X, 1
i
TSL=;2_N—2%- czf arc sin x dx + -?:ris-g“—’ﬂ , (74)
2
0 Xy

from which we get

TSL = (—772_”—2(;162— [2VC, arc sin (1/YC,) + VC, VC,-1 - C,

+ -721 + 1n[VC, + ¥C,;-1] (75)
In general, C, >>> 1. Therefore, Eq. 75 can be simplified to read
=TG4 '
TSL = 2o, [4 - 7 + 1n(4Cy)]. (76)

If we wish to rewrite this in the manner of Eq. 70, remembering that we have set s = 2,

st = EM/ 7‘)(;”_ 82()"‘;; :13:’1“2 A 14 - 1 + 21n[2(0/N)] - 21n(sin @)} (17)

Eq. 77 can be used to study the effects of varying wavelength and roll-off angle on the total
scattered light. Fig. 5-12 implies that a small roll-off angle will substantially increase the
amount of light scattered into the forward hemisphere by the corresponding mirror. Table 5-2
gives numerical data to demonstrate this. Changing the roll-off angle from half a degree to
0.02 arc-second increases total scatter by a factor of 3. (The latter angle corresponds roughly
to the middle-ultraviolet Airy disk radius for the large space telescope.) Thus the difference
between this model for the scatter function and the Beckmann model can have real physical
significance. :

Table 5-3 gives the total scattered light for some of the samples run by the University of
Arizona!? for the test wavelength, and for ultraviolet wavelengths of interest to the LST program.
A scatter function curve we fit to the square-law portion of the King-Kormendy (K-K) star profiles
is also included. The variation of the total scattered light with wavelength and surface roughness
is pretty much as expected. Note that the integrated scatter for the K-K example goes above 1.0
at 121.5 nanometers, indicating that the roll-off angle is too small for that case. In fact, it is
probable that this scatter function model is significantly erroneous at any wavelength shorter
than 325 nanometers for this example, even neglecting that the original telescope from which the
data was taken has a refracting corrector plate and may not transmit light of those wavelengths.

The total scattered light is related to the rms wavefront error for the wavefront by the
equation

TSL =1 - exp [-(2mw)?] (78)

for small wavefront errors. (The more commonly seen form uses the first term in the series
expansion of the exponential.) We can thus estimate the rms wavefront error by inverting Eq. 78
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It is interesting to use Eqs. 78 and 77 to examine how the rms wavefront error varies with wave-
length. In particular, it is interesting to see how the rms wavefront deviation oy = wX varies with

-
l‘ 1 iﬂ

wavelength, as is shown in Table 5-4.
These results might be dismissed as anomalous, since one normally assumes that the
surface irregularities are independant of wavelength. There is a physical explanation, however. =
The finest detail which can be resolved on the mirror surface is limited by the wavelength of the -
reflected light. Thus reducing the wavelength allows finer structure to affect the scattering
function, i.e., the spatial frequency bandpass is increased. This will increase the rms deviation. =
=
Table 5-2—Variation of Total Scattered Light With Roll-Off
Angle, @ [p (a;) = 0.085; sin a; = 0.10; /3, = 1.0] =
i - -
Sin @y o g TSL Multiplier
1072 34'23" 0.02693 1.000x =
1073 3'26" 0.03776 1.402x =
104 21" 0.04858 1.804x
1075 2.1" 0.05941 2.206x _
1078 0.21" 0.07024 2.608x =
1077 0.021" 0.08106 3.010x
Table 5-3 — Variation of Total Scattered Light With Wavelength =
and Surface Roughness (sin ay = 1075, =
sin oy = 0,10; A = 514.5 nm)
Sample 236% 247* EDF 3-11* K-K¥t -
pglay, A) 0.00018 0.00084 0.0143 0.085 :
Wavelength, nm f
514.5 0.000145 0.000694 0.0118 0,0702
325.0 0.000374 0.001793 0.0305 0.181 =
121.5 0.007843 0.0136 0.232 — -
*From University of Arizona data (reference 17). 2=
T Fitted to inverse square curve of King-Kormendy data. §
Table 5-4 — Variation of RMS Deviation of Wavefront, oy, -
With Wavelength (same cases as in Table 5-3.) %
Sample 236 247 EDF 3-11 K-K o
Wavelength, nm .;.
514.5 9.84 21.6 89.3 221.0%
325.0 10.0 21.9 91.1 231.4* =
121.5 10.3 22.7 99.4 —_ =
*Effective value, since scatter comes from several surfaces in —=
series, plus dust, etc, 2
An increase in effective rms deviation due to an increase in the spatial frequency bandpass .
because of wavelength change is hard to detect with present measurement techniques. Integrated -
scatter is seldom measured over a full hemisphere from 0 to 90 degrees. Those portions of the
5
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scattered light falling inside 1 degree are seldom considered, and as we have shown, they are

of considerable significance in this model. Also, measurements of rms deviation in mirror
surfaces are usually done over a very restricted spatial frequency range, due to instrumentation
limitations. Even then, measurements are usually made at only one wavelengthj so any variation
in spatial frequency bandpass of the instrumentation would not be considered.

5.4 IMAGE IRRADIANCE DUE TO SCATTERING

Use of the scatter coefficient p S(cm) allows calculation of the image irradiance due to
scattering of light from a point source in a very simple manner. Consider, for example, a
parabolic mirror with a point source on its optical axis. Rays from the point source lie parallel
to the optic axis, and are focused at the center point of the image plane. Any image point a
distance h’ from the center point is associated with object angle @. A pair of rays traced from
any point on the mirror to the point source image and the point at h’ will be separated by the
angle a. Therefore, @ can be identified with the scatter angle, above. Thus, if E, is the aperture
irradiance due to light from the point source, then the mirror will appear to have a radiance (La)
at all points in the mirror, as seen from h’, which is given by

L(a) = ps(a) Ea (79)
If F is the focal ratio of the parabola, the image irradiance E; at h’ is given by

Ej(@) = 7L(a)/4F = np g(@) Ey/4F? (80)

Now consider the Cassegrain telescope shown in Fig. 5-15 and again assume the point

source is on axis. We will also assume that both mirrors have the same specular reflectivity
p and the same scatter function, i.e., pg(8) = p g(@) when 8 = @. Scattering from the primary
mirror will follow the same relationship as for the parabola above, except that the scattered
light reflects off the secondary before it reaches the image. Thus the contribution from the
primary mirror to the irradiance at h’, Eip(a), will be given by

Eipl@) = mpp (@)Ea/4F’ (81)
The contribution from the secondary mirror is

Eig(B) = 1p g(BE,/4F (82)

(We are ignoring the effects of the central obstruction to simplify the equations.)

Simple geometry tells us that
Ep = p (Dp/Dg)’Eq (83)
and the optical invariant tells us that
sin g = (Dp/Dg) sin & (84)

We will use Eq. 67 to define the scatter coefficient, and make the following simplifying assump-
tions:

cos B ~cos a =1.0

B, a>>> ay
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From this, it follows that the scattered light contribution from the secondary is
Eig(a) = mpp g(@)Ea(Dp/Dg) *~5/4F* (85)

Note that this differs from Eq. 80 only in the term (Dp/DS)z'S, and that if s = 2, the con-
tributions from the two mirrors are identical. We can generalize this by saying that in an n
mirror optical system, if the slope of the scatter function is 2, then

Ej(a) = mp"lp g(a)E, /4F? (86)

If the slope s differs from 2, then the relative scatter contribution in an n mirror train depends
upon the axial beam diameter at each mu-ror If s > 2, the largest aperture mirrors will dominate,
and if s < 2, the smallest will dominate.

5.5 STARLIGHT SCATTERED FROM THE PRIMARY MIRROR

One problem of special concern to astronomers is the degree to which scattered light will
raise the background image irradiance. Although the actual field of view of the LST will be fairly
small, less than 1 degree including the tracking field, the primary mirror will be illuminated by
a much larger portion of the sky. Light from stars well outside the nominal field of view will
therefore be scattered and diffracted into the field of view. The question is, will this scattered
starlight add enough light to raise the effective background significantly above that due to zodiacal
light and unresolved stars?

We will use a very elementary model for estimating the contribution of scattered starlight
to the effective sky background. We can build a model for a star image profile similar to those
of King and Kormendy using diffraction theory and the scatter model described above. Allen?’
provides tables of star densities according to magnitude and position in the sky. If we assume
these stars are distributed on a uniform rectangular grid, we can add their star profiles at a
given point to determine the effective background radiance they generate. Star profiles outside
the nominal field of view can be multiplied by a vignetting factor to account for shading of the

primary mirror by the telescope tube.

We have developed a computer program to do this calculation. It will be described below
along with some results computed with it. A copy of this program and a user’s manual are being
supplied separately. First, we will develop the star profile model and compare it to the King and
Kormendy models.

5.5.1 Star Profile Model

If the aperture irradiance from a star on the optical axis of the telescope is E;, then
diffraction theory tells us that the image irradiance at the center of the Airy disk in a perfect
lens is

Eip(0) = 727Dp’Ea/162 F* (87
7 being the optical system transmittance, including central obstruction. (We will ignore the image

spread due to the central obstruction.) An object of uniform radiance L will give an image ir-
radiance S

E; = 77L/4F? ' (88)

By combining Eqs. 87 and 88, we can define an effective sky background radiance Lb(O) corres-
ponding to the center of the Airy disk:
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Lp(0) = 1Dy’ Ea/4A%, (89)

In reference 6, we defined conversion constants between E; and its source star magnitude
my, and between My magnitudes per square arc-second and L,

E, =2,65x 107% ¥ 0-4My’ jumens/meter? (90)

Ly, = 1.13 x 109 - %4My Jymens/meter?-steradian (91)
If these terms are substituted into Eq. 89, the following can be shown:

My(0) =26.837 + my — 5 log Dy + 5 log A (92)

Eq. 92 defines the zero reference point in calculating the star profile model.

The average normalized irradiance in the ring structure of the Airy pattern is given by
Eid(@)/Ejp(0) = 42%/1'Dp’a’ (93)
From Eqs. 80 and 87, neglecting 7, we obtain
E;s(e)/E;p(0) = 4p s(@)?/mDy? (94)

The sum of Eqs. 93 and 94 is the ratio of the effective radiance at @ to the effective radiance
at the center of the pattern, Ei(a)/Eip(O). Subtracting 2.510g[E;j(@)/Eip(0)] from Eq. 92 will
give the total effective radiance at a,

In completing this model by substituting Eq. 70 for the scatter coefficient, we have used
several simplifications: first, s = 2; second, we have assumed that cos @ = 1,0; third, we have
neglected the scaling of @y with wavelength. (The latter was done inadvertantly in computer
programming before the wavelength scaling laws were fully analyzed. It has no effect on the
results in this section, however, since a >> ay for virtually all examples considered, and has
not been corrected in the computer program.) Egs. 70, 93, and 94 combine to give

Ej(a) 42° 4%p glay, A) sin’ a,

E;p(0) 7Dpa’ ' 7 cos o (@ + @)Dy (95)

After conversion into log units and combination of Eqs. 92 and 95, the complete star profile
model becomes

My(@) = 30.303 + my + 2.5 log Dp + 5 log X + 7.5 log @ +2.5 log cos a,
+2.5 log (a2 + a?) — 2.5 log [Acos ay (@2 +a?)
+ 1Dpe®N T g @y, ) sin® @] (96)

It should be pointed out that while we refer to visual magnitudes and to image irradiances in
lumens per square meter in Egs. 90 and 91, the units are cancelled by the equality 89, Thus,
any form of magnitude may be used in Eq. 96, as long as my and .#,, are consistent.

Eq. 96 has been used to generate a star profile model matching that of King at large scatter
angles. This is compared to the data of King and Kormendy in Fig. 5-16. King’s star profile
and the model agree well at angles larger than 12 arc-seconds. Since Kormendy claims that below
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Fig. 5-16 — Star profile model of Eq. 96 compared to King/Kormendy star
profiles; pure diffraction curve shown for comparison
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90 arc-seconds the curve rolls up due to scattering in the emulsion in which the image is recorded,
the mirror scatter model should not match the data below this angle. Eq. 96 assumes a slope of

2. We have made no attempt to match Kormendy’s lower slope angle, although that could be done.
Since Kormendy’s curve shows variation in slope, a more complex scatter function model will

be required to match it.

In Table 5-4, we showed that this model corresponds to a single scattering surface with
rms deviation (on the wavefront) oy = 221 f\ngstroms. In reality, the Schmidt telescope is implied
by Kormendy to have five optical surfaces: the primary mirror, two surfaces on the corrector
plate, and at least two surfaces on the spectral filter. (We are not familiar with the telescope
ourselves.) If we assume each refracting surface has the same scatter function, then the rms
deviation in the wavefront added by each surface is 98 f\ngstroms, as calculated through Eq. 78.
This would be about 49 f\.ngstroms rms ona mirror surface, and considerably more than that on
the refraction surfaces. This is not out of line with normal mirror finishing practices. Allowing
for the presence of some dust on the surfaces, the scatter data must be considered to be of a
magnitude consistent with optical surface scatter as its principal source.

We have used Eq. 96 to study the effects of varying the scatter constant pglay, A), the
wavelength, and the number of mirrors in the image forming train on the star profile of a zero
magnitude star. The results have been plotted in Figs. 5-17, 5-18, and 5-19. M (@) is plotted
versus log sin @ over angles ranging from just under 0.1 arc-second to 30 arc-minutes. All plots
are for an aperture diameter of 3.0 meters, and the roll-off angle has been set to 107¢ radian.
Other parameters are identified on the figures.

Fig. 5-17 shows variation of the star profile as ps(ai, ) is varied from 0.0001 to 0.1,
where ), = 632.8 nanometers and sin @; = 0.1. The smallest value of pglay, ) corresponds to
a superpolished surface for which oy > 9 Angstroms, and the largest corresponds to a very rough
surface for which oy, = 300 Angstroms. The intermediate values correspond roughly to the
normal range of surface finishes. As can be seen from the plots, the star profile for the super-
polished surface differs little from a straight line over its entire length, and is in fact virtually
identical to the diffraction limited profile at angles less that 1 arc-minute. The 0.01 curve shows
departure from the diffraction limited profile down to under 1 arc-second, but the departures are
small. Note that the diffraction limited profile is for the average of the ring structure. In this
regard, it is interesting to compare Fig. 5-17 with Fig. 4-65a, which shows the corresponding
plot for the simulated LST wavefront. Allowing for the 10-unit scale change in effective radiance
due to the difference in m, the two curves do agree reasonably well.

Fig. 5-18 shows variation in the star profile as a function of wavelength, It gives profiles
for p g(@y, A,) = 0.001 and @ and Ay as before for A = 632.8, 325, and 121.5 nanometers. Decreasing
the wavelength reduces the diffraction profile but increases scatter. Again, it is interesting to
compare these results with the simulated LST wavefront data of Section 4.8. The figures cor-
responding to the two shorter wavelength profiles are Figs. 4-66a and 4-67a. Again allowing for
the change in m,, we see that in these cases, the effects of ripple are pushing the PSF well above
the diffraction-average of our star profile model.

Fig. 5-19 shows the effects of having more than one mirror, where the scatter constant
pglay, &) = 0.01 for the individual mirrors. These curves in effect assume that the specular
reflectivity of all mirrors is 1.0, so that the effective scatter function of n mirrors is n times
that of one mirror. It is also assumed that the star is in the field of view, so that all n mirrors
are illuminated by it. If some of the mirrors are only partially illuminated by light from this
star, the amount of scattered light must be reduced accordingly.

We have considered the effects of reducing the aperture diameter from 3.0 to 2.4 meters,
but have not plotted the results. The diffraction limited part of the curve is raised by 0.24
magnitude per square arc-second, and the scatter limited end of the curve is not affected at all.
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Fig. 5-17 — Variation of star profile as a function of scatter constant
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Fig. 5-19 — Variation of star profile with number of mirrors
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5.5.2 MISCAT Computer Program Model

Eq. 96 represents the effective radiance distribution of a star image as projected back into
object space. If we wish to determine the effective background radiance at a point (x, y) in the
sky due to scattered light from a series of stars located at points (xj, yj), we can use Eq. 96 to
define the contribution of each, and sum the contributions. We need only define the angle ajj
between the points (x, y) and (xj, yj), and substitute it into Eq. 96 to compute the individual con-
tribution. The average star spacing and number of stars involved can be estimated from tables
in Allen?’. The field of view over which calculations are to be made can be determined from the
vignetting characteristics of the LST. We have developed a computer program, MISCAT, which
calculates the effective background radiance due to scattered starlight using this model. The
computation technique will be described here, and an operating manual is being supplied separately.

Eq. 96 is for an on-axis star, and must be modified to account for vignetting in the telescope
for use in MISCAT. Fig. 5-20 is the telescope model used for calculating vignetting, and Fig.
5-21 shows the vignetting diagram. The user supplies the dimensions L, S, Dp, the central
obstruction diameter ratio €, and the unvignetted field of view 6, in radians. From these, the
computer calculates Dy =Dp + Lo, Dg = €Dp, dg = a8, and dy, =aL. The transmitting area A
is computed by standard formulas described in the operating manual. The vignetting factor W(c)
is given by

W(@) = 4A(@)/7(1 - €Dy’ (9m
The reduction in the effective radiance of a star at angle Olij,ul{(aij), is given by
M (as5) = -2.5 log Wlajj) (98)
Adding Eqgs. 96 and 98 gives the correctéd starwcontribution,./l ij* Written out in full, this becomes
””ij =30.041 + my + 7.51og Dp + 5 log A + 2.5 log(cos ai.) + 2,5 log(l - €9
+ 1.5 log ajj + 2.5 log(ay® + a;;%) - 2.5 log Ala;))
- 2.5 log[x’cos a, (@ + aijz) + n3Dpai§ Ao gley, A)sin ay] (99)
~ To compute the total sgaftered li'ght,; we must define the coordihg}gs of each star and the
total number of stars. The maximum possible number of stars is limited by the field of view
boundary at which W(a) = 0 (or an arbitrarily chosen fraction larger than 0). We can determine

the number of stars of a given magnitude lying within this boundary from Allen’s tables of star
densities at different galactic coordinates. '

The model starfield we use is illustrated in Fig. 5-22. The point at which we compute
effective scatter radiance is on the axis of the telescope, at coordinates (0, 0). The stars are
distributed on a rectangular grid with the spacing of a, in radians. I Ny is the number of stars
per square degree of magnitude my, the spacing is given by

a = 0.01745 Ny ~1/? (100)
then

x; = (i - 0.5)a; y; = (G - 0.5)a (101)
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and
o4 = inz + yjz (102)

These values are substituded into Eq. 99, and the total effective radiance.# is calculated by
the summation

Mp =~2.5 log 210"’-”‘11 . (103)
%

where @y, marks the domain of the summation boundary. The mumber of calculations can be
reduced somewhat by taking advantage of symmetry. In Fig. 5-22, note that there are two differ-
ent star groups: group I repeats itself 4 times, and group II 8 times.

Input to the computer program includes: the telescope parameters defined above, the
constants defining the scatter function, the base wavelength at which calculations are to be made,
and a table of star magnitudes and population densities. As an output, the user receives a table
showing the background contribution for each star magnitude plus the total contribution from all
input stars. Further description of the program will be found in the operation manual.

5.5.3 MISCAT Results

Several sets of computations have been run with MISCAT to test the program, and to see
which design parameters most strongly affect the level of scattered starhght Table 5-5 gives
the stellar population statistics for the galactic equator, which represents the most populous
sky background the LST will have to view, This data was used in all MISCAT runs described
here. The nominal telescope design parameters used were Dp = 3.0 meters, L = 13.2 meters,
S = 6.39 meters, € = 0.32, and 6 = 0.008 radian, The nominal scatter function parameters were
@y = 0.1, A = ), = 514.5 nanometers, p g(@;, ) = 0.01, and @, = 107°, These values should be
assumed except where otherwise indicated.

In Table 5-6, we show the effects of varying p (‘11, %) and @,. As expected, varying the
scatter coefficient does affect the background contnbutlon 31gmf1cant1y, although not as strongly
as expected. Thus, a change of 100x in the scatter coefficient has changed the background contri-
bution by roughly 50 to 60x. Change in ¢, has very little effect.

Table 5-7 shows that changing the tube length has little effect on the amount of scattered
starlight. This signifies that only the stars nearest the field of view are contributing significant

amounts of scattered starlight to the background. (Note that stray sunlight and earthlight scattered

off the inside walls of the telescope tube are strongly affected by tube length.)

Table 5-8 shows that changing wavelength strongly affects the amount of scattered starlight.

Here one has to be careful of how magnitude is defined. No attempt has been made to consider
spectral characteristics of the stars involved in the population data of Table 5-5, only that J(T
will be consistent with the units of myg.

In evaluating these results, it should be noted that the darkest sky background expected
from the LST is on the order of 4, = 23.5 magnitudes per square arc-second. Of all the back-
ground contribution values shown here the only one approaching that is for p g(a,, A) = 0.1,

X =121.5. This is an example which should be far worse than will ever be encountered w1th the
LST. It should be pointed out that the data in Tables 5-6 through 5-8 represents additions to the
background, and that # = 25, for example, will increase the background total from 23.5 to 23.3.
This is not a significant increase, however. Thus, this data leads us to conclude that if our
scatter function model is correct, scattered starlight from the primary mirror will not be a
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significant factor in determining the effective sky background radiance, if the primary mirror
has a normally smooth finish. Superpolishing is therefore not necessary for reasons of control-

ling scattered starlight.

This data indicates that scattered light from stars outside the field of view should not be
a problem even in the worst situation, when viewing the Galactic equator. For this reason, we

have not completed calculations for the best situation, viewing the Galactic poles.

Table 5-5—Stellar Population Density
at Galactic Equator (stars per square degree)

(Allen?’, page 234)

14
15
16
17
18

19
20
21

Table 5-6—#T as a Function of pg and a,
at Galactic Equator (magnitude per square second)

Nk

0.0178
0.0525
0.1514
0.4074
1.122

3.31
9.33
26.92
75.86
199.53

524.81
1,318.
2,512,
8,760.

15,849,

31,622,
50,119,
100,000,

Ps

A
a, 70,001 0.01 0.1
0.00001 30.48 28.55 26.14
0.0001 30.49 -_— 26.20
0.001 30.64 — 26.50
0.01 30.93 — 26.29
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Table 5-7 -J(T as a Function of L at Galactic Equator
(magnitude per square second)

L, meters

T

Table 5-8—#7 as a Function of Wavelength at

10
28.52

13.2
28.55

15
28.57

20
28.61

Galactic Equator (magnitude per square second)

Ps

0.01
0.1

A, nm
e A Y
514.5 325 121.5
28.55 217.62 25.51
26.14 25.15 23.01
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6. EFFECTS OF MIRROR SURFACE COATINGS

In the LST, the mirror substrates will be coated with a thin layer of aluminum to give high
reflectivity over the maximum possible spectral range. This coating will have a thin protective
overcoating, probably of magnesium fluoride. It is legitimate to ask whether or not these coatings
will contribute significantly to the magnitude of the scatter coefficient. Unfortunately, there is
little concrete data from which one can draw quantitative answers to that question.

In general, it is assumed that the aluminum and MgF, coatings will neither add to nor smooth
out the surface roughness of the mirror substrate, but will reproduce it substantially intact. We
have discussed this subject with Dr. J. Stanford of the Michelson Laboratory, Naval Weapons
Center, China Lake, California. He feels that current data supports this theory. Normal scatter-
ing theory, therefore, predicts that these coatings will have no significant effect on scattering,
provided a competent job has been done in laying down the coatings.

There is one effect which can be attributed to the aluminum film, when coupled with the
surface roughness of the mirror substrate, which is not explained by scalar scattering models.
At wavelengths in the vicinity of 1300 A, the reflectivity of roughened aluminum surfaces is reduced
by surface plasmon coupling, which causes absorbtion of the incident radiation. The principal
reference of interest is a paper by Endriz and Spicer,28 who have produced the data shown in Fig.
6-1. This data may indicate that a very smooth surface should be required for the LST mirrors
on the basis of system transmittance considerations alone. There is reason to believe that this
data is pessimistic, however, and does not apply to polished mirror substrates.

We are not in a position to do detailed research on surface plasmon effects. Our current
understanding has been developed through the cited reference and other literature, and through
discussions with J. M. Elson and J. Stanford of Michelson Laboratory. Mr. Elson has worked
with Ritchie?® at Oak Ridge, and is one of the leading authorities on surface plasmon effects. He
is familiar with the work of Endriz and Spicer cited above, and has explained why it should be
considered pessimistic.

The principal reason for suspecting the data to be inapplicable in our case is that the
roughened surfaces were not a product of substrate polishing. The aluminum coating was layed
down on top of an undercoating made rough by cyrstallization in the coating process. It is suspected
that the spatial frequency distribution of the surface irregularities in this coating is quite different
from what can be expected in polished mirrors, and that the differences are such as to make the
plasmon coupling more effective. It is believed that the effects shown in Fig. 6-1 may be pessi-
mistic by an order of magnitude, perhaps more.

At present, there are too many unanswered questions to say anthing conclusive about surface
plasmon coupling and how it will affect ultraviolet performance in the LST. It is known that the
surface plasmon coupling is dependent in part on the spatial frequency distribution of the surface
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irregularities, but the exact nature of the dependency is not known; nor is there adequate data
as to the spatial frequency distribution of surface irregularities in polished glass substrates.

Most of the light absorbed in the surface plasmon coupling is reradiated, but again there
is little measured data available. The reradiation pattern will be dependent upon the spatial
frequency distribution of the mirror surface irregularities, it is believed. The nature of the
pattern is not known, but it is presumed that the distribution will be neither specular nor
Lambertian. There is a directional effect in mirrors that are overcoated to give enhanced re-
flectivity at a wavelength where the plasmon coupling is strong. In this case, there is some
peaking (a 50 percent increase) of the reradiation at angles where the coating reflectance is
enhanced??. This is not expected to be a problem with the LST, where the protective MgF, coating
is quite thin. It is expected that the reradiation pattern for the LST mirrors will be more nearly
diffuse. If this is indeed the case, it should contribute little to the background image irradiance.
This remains to be proven, however.

We expect to see new data on the surface plasmon effect in the near future. Dr. Stanford
has begun a new series of ultraviolet reflectance and scattering measurements on platinum and
aluminum. He has been associated with modifications to the synchrotron facility at Stanford
University. Intense synchrotron radiation is emitted between 350 and 3100 f\, the range over
which he is making measurements. This unique light source is free of many of the experimental
problems that affect most far-ultraviolet measurements, and should give some of the best data
ever obtained for ultraviolet scattering. This should be of considerable help in evaluating the
effects of surface plasmon coupling. In addition, surface plasmon theory is advancing rapidly
for other applications, so the analysis and interpretation of results should be improved.

In brief, surface plasmon effects will certainly be present in the LST mirrors at certain
wavelengths in the ultraviolet. While earlier evidence made this appear to be a particularly
severe problem, current thinking has downplayed its significance. Conclusive quantitative data
is still lacking, but the area is being studied actively. We recommend that the subject be reanalyzed
when better data and better theory become available, '
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7. FUTURE EXPERIMENTAL MEASUREMENTS PROGRAM

All of the foregoing analysis is based on extrapolation of existing measurements of wide
angle scattering and on large spatial frequency figure errors in mirror surfaces. Hard data on
the shape of the point spread function between a few Airy radii and about 1 degree does not exist,
nor does hard data exist on the heights and spatial frequency distribution of mirror surface
irregularities associated with scattering at these angles. The King/Kormendy star profiles and
wavelength extrapolations of infrared scatter measurements suggest that our wide angle scatter
function model is reasonable to a minute of arc or less, but below that no data exists which is
directly applicable to LST. There is also little data concerning the scatter contributions we
should expect from dust and mirror surface contamination. Further experimental measurements
programs are needed in these areas.

Two areas of experimentation are necessary, direct measurement of scattering from
astronomical grade mirrors, and measurements of the surface irregularities on those mirrors.
Preferably, the same mirrors should be used for both types of experiments so that the distribution
of scattered light can be related directly to the spatial frequency distribution of mirror surface
irregularities. In this section, we will discuss the requirements for both types of measurements.
Emphasis will be placed on the type of data required more than on details of experimental tech-
nique, except in certain aspects of the center of curvature scatter experiment.

7.1 MEASUREMENT OF SCATTERED LIGHT

Three basic problems make scattering measurements at small angles very difficult. First,
and most difficult, is the problem of experimental setup: illuminating a large enough area to
cause scattering at the small angles desired, and getting close enough to the specularly reflected
beam to measure the scattered light. Second, eliminating other scatter sources from the apparatus.
The addition of other optical elements to control the first problem introduces additional scatter
surfaces, which must be accounted for in data reduction. Third, the scatter component we wish
to measure can be quite low compared to pupil diffraction, as illustrated in Fig. 5-17. Separating
scatter from diffraction will therefore be difficult in many types of experiments.

The first two problems can be eliminated by measuring the scatter function for a spherical
mirror from its center of curvature, as described below. The spherical mirror is both the
scatter source and focusing optics, eliminating all other optical components between the point
source pinhole and the sensor aperture. Pupil diffraction can be controlled by apodization, as
mentioned in Section 4.5, allowing scattered light to be measured at very small angles. This gain
is purchased by a loss in other aspects of the experiment, however. There is no possibility of
an A-B comparison of the light beam with and without the scatter surface, since it is an intimate
part of the focusing optics. We will discuss these problems in Section 7.1.1.

An alternate approach is suggested by the results plotted in Fig. 5-14: multiple wavelength
scatter measurements. We can estimate the scatter of, say, 0.5-micrometer radiation at 3 minutes
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of arc by measuring the scatter of 10-micrometer radiation at 1 degree. Such measurements
could be done with a number of existing experimental setups, which makes this approach attractive.
Some of the advantages and disadvantages of this approach will be discussed in Section 7.1.2.

7.1.1 Center of Curvature Scatter Experiment

The basis of the center of curvature scatter experiment is illustrated in Fig. 7-1. A
spherical mirror images its center of curvature with perfect fidelity. If we place an illuminated
pinhole to one side of the center of curvature of the mirror, it will be reimaged perfectly at a
point equidistant from the center of curvature and directly opposite the object pinhole. The image
point will be spread out by pupil diffraction plus scattering due to mirror surface irregularities.
This pattern can be scanned with a pinhole photometer to measure the diffraction and scatter
components. The only optical component between pinhole light source and pinhole photometer
besides the spherical mirror is air, and that can be eliminated by running the test in a vacuum
chamber if necessary. There is no fundamental limitation on the diameter of the spherical
mirror except cost and availability, so scatter measurements could be made at very small angles.

There are two important limitations on the experiment, however. The measurements must
be compared to theory, since there is no means of removing the scatter surface without also
removing the focusing surface. Secondly, as shown in Fig. 5-17, the scattered light will be masked
by diffracted light at small angles for all but the roughest mirror surfaces, if that scatter function
model is correct. Thus very careful control of the experimental parameters will be necessary,
and data reduction will be complicated.

In Section 4.5, it was shown that changing the pupil illumination patfern from flat to a
Gaussian function of the distance from the center of the pupil will suppress pupil diffraction with-
out affecting scatter due to diffraction by wavefront irregularities. Apodization of this type would
serve several useful functions in the scatter measurements experiment. First, it would allow
measurement of the scatter function to within several Airy radii of the center of the pattern.
Second, comparison between measurements with the Gaussian pattern might serve the function
of an A-B test, reducing somewhat the difficulties of direct comparison to theory. Third, apodiza-
tion concentrates all light except the scattered light within the central maximum, to a good
approximation. Thus, measuring the amount of light in the central maximum and comparing it
to the amount of light striking the mirror will give the total scattered light from a few Airy radii
to 90 degrees.

The latter task has some obvious experimental problems as well: it is necessary to map
the illumination pattern of the mirror accurately, and to discount absorbtion by the aluminum
coating. If these problems can be overcome, however, the technique should give a far truer
measure of the total scattered light than the usual integration sphere measurements, which usually
don’t measure the scatter component within a degree or so of specular.

The experimental problem now is to generate the Gaussian apodization function in the il-
lumination pattern. Two closely related techniques for doing this have been suggested by Adrian
Walther and Roland Shack in personal discussions. Both rely on the filtering technique illustrated
in Fig. 7-2. This shows a light distribution filter formed by an absorbing medium sandwiched
between a flat glass plate and a convex spherical lens. The transmittance 7(y) of the absorbing
medium at height y above the centerline is given by

7(y) = exp(-act) (104)
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Fig. 7-1 — Basic center of curvature scatter measurement experiment
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where @, is the absorbtion constant and t is the thickness of the absorbing medium. But if the
radius of curvature of the spherical surface is R >y, the t = y°/2R, to a sufficient approximation.
Thus '

(y) = exp(~a¢y*/2R), (105)

which is a Gaussian function of y.

The suggested techniques for incorporating this effect into the center of curvature scatter
experiment are illustrated in Fig. 7-3. A. Walther suggests a large cell followed by a focusing
lens, with a truncating pinhole being necessary to eliminate any scattering from the lens. R.
Shack suggests a Gaussian pinhole formed by a very small sphere sandwiched between two flat
glass plates. The absorbing medium could be a solid in the first case, but must be a liquid in
the second. The latter is probably preferable in either case, since it might eliminate speckle
problems with a laser light source, and since in any case it allows control of the width of the
Gaussian profile by diluting the absorbing medium or making it more concentrated.

The center of curvature technique as described here can be applied only to spherical mirrors,
if other scattering surfaces are not to be added. It could be used as the basis for an A-B type
comparison for a large folding flat. In this case, one would compare the scatter function of the
sphere to the combined scatter function of the two mirrors used in double pass. It is also possible
to do a center of curvature test on large concave mirrors with the aid of a null lens, if scattering
in the null lens can be discounted in data reduction. The fact that the null lens optical surfaces
are close to the focus of the system should help. Perhaps one of the more important experiments
to be run on spherical mirrors is to insert refracting elements near the focus to test whether
scatter measurements can be made on parabolas during fabrication using this technique.

We feel that the center of curvature scatter experiment represents the most powerful tech-
nique for measuring scatter at very small angles of any presently suggested. We recommend that
it be pursued further,

7.1.2 Multiple Wavelength Scatter Measurements

While it is difficult to make scatter measurements at angles well under 1 degree, scatter
measurements are routinely made at angles of 1 degree and greater by a number of workers!’s2%2%,26
at a variety of wavelengths. We have shown in Fig. 5-14 how scatter measurements of 10.6-
micrometer radiation at 1 degree can be scaled to give visible light scatter data at 3 arc-minutes.
In principle, then, one can build up narrow angle scatter data at short wavelengths by making wide
angle scatter measurements at longer wavelengths.

This approach to narrow angle scatter measurements has several advantages. First, it
can be done with equipment which already exists in a number of laboratories. Second, it gives a
method of detecting at least some instrumentation difficulties. Most scatter measurements we
have seen show the scatter functions measured to roll upward at small angles. In at least one
instance,!” this was a result of instrumentation problems, and not a real effect. A scatter mea-
surement series run with, say, 1.6-micrometer radiation and scaled to 0.5 micrometer would
overlap data taken at the latter wavelength, but with the angle scale shifted downward by a factor
of 1/3.2x. This should reveal any angle dependent instrumentation problems and allow data to

be corrected for them.

The wavelength scaling rules demonstrated in Fig. 5-14 are an inherent property of the
“gpectrum of plane waves” scatter model, which attributes scattering to the geometry of the
wavefront irregularities introduced by reflection off the mirror. If the scattering process can
legitimately be represented as diffraction by a series of cosine phase gratings of different spatial
frequency and phase amplitude, these wavelength scaling rules will be valid. Thus if we take
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(b) Shack Gaussian pinhole

Fig. 7-3 — Techniques for producing Gaussian pinholes

7-5



scatter data at a series of wavelengths, and find that after scaling there are discrepancies which
cannot be explained by instrumentation errors, then this is evidence that other scatter mechanisms
are involved.

There are both advantages and disadvantages to the latter aspect of wavelength scaling. The
advantage is that it may aid in defining spectral regions where other scatter mechanisms pre-
dominate. The disadvantage is that wavelength scaling of this nature may not be applicable in
wavelength regions where nonscalar scatter mechanisms are suspected. In particular, it seems
likely that this is true in regions of the ultraviolet where surface plasmon coupling changes
reflectivity characteristics.

We feel that coordinated scatter measurements at a number of wavelengths with subsequent
wavelength scaling of the results would be a useful experiment to perform, both in terms of
improving our understanding of the scatter mechanism, and in terms of extending (with relatively
little expense) the angular domain over which visible and near ultraviolet scatter coefficients are
known. A series of scatter measurements should be made on the same mirror samples at a
series of wavelengths. The wavelengths should run from 10.6 micrometers in the infrared to as
short a wavelength in the visible and near ultraviolet as possible. The wavelengths should be
spaced apart no more than a factor of 2 to 4 in wavelength to maximize overlap of data in angle
space. (This would require the addition of measurements somewhere in the range of 3 to 5 micro-
meters.) The range of angles over which scatter measurements are made at each wavelength
should be maximized for the same reason.

7.2 SURFACE IRREGULARITY MEASUREMENTS

In discussing surface irregularity measurements here, we will confine ouselves primarily
to discussing what should be measured, rather than techniques for making the measurements.
Dr. James Wyant of the University of Arizona Optical Sciences Center has prepared a survey of
current measurement techniques and their limitations, which we include as Appendix B of this
report. (This was prepared under a consulting agreement on NASA contract NAS8-29949. We
include it here to avoid any unnecessary duplication of effort in this section.) Dr. Wyant’s memo
will be referenced where called for.

In our consideration of the relationship between surface irregularities and the scattering
they cause, it is clear that there are two areas of study in which data is not available. First,
there are no surface height profiles with lateral resolutions in the range of a few micrometers
to tens of centimeters. Second, where height profiles have been taken, no attempt has been made
(or at least none published) to compute the spatial frequency spectra of the surface irregularities.
Instead, rms deviations are measured or estimated, and used in statistical models which assume
certain spatial frequency distributions. As we have tried to demonstrate in Section 5, the most
commonly used assumption in this regard, which gives the Gaussian autocorrelation function, is

wrong.
The lateral resolution problem is best illustrated by Table 7-1. The spectrum of phase

gratings model for scattering by surface irregularities shows that the scatter angle @ is related
to the period d of the phase grating by the grating equation

Sin @ = £A/d (106)

for normal incidence. Thus, if we are interested in investigating surface irregularities associated
with scatter angles from 1 arc-second out to a few degrees at wavelengths in the visible and
ultraviolet, we must be able to resolve spatial frequencies with periods in the range indicated in
Table 7-1.
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Table 7-1 — Period d of Phase Grating Associated

With Scatter Angle @ and Wavelength A

Wavelength (sz , nanometers

Scatter P “

Angle, a 632.8 325.0 121.5
1" 130.52mm 67.04mm 25.06mm
3" 43.51mm 22.35mm 8.35mm
10" 13.05mm 6.70mm 2.51mm
30" 4.35mm 2.24mm 835.4um
1' 2.18mm 1.12mm 417.7Tum
3’ 725.1um 372.4um 139.2um
10' 217.5um 111.7um 41.77um
30' 72.51um 37.24um 13.92um
1° 36.26 um 18.62um 6.96 um
3° 12.09um 6.21um 2.32um
10° 3.64um 1.87um 0.700 um
30° 1.27um 0.650um 0.243 um
90° 0.633 um 0.325um 0.122um

It is clear that the range of resolutions involved is too great to be handled by an single
measurement technique. Dr. Wyant has pointed out that most measurement techniques have
resolutions which are not much greater than 500 elements across a field of view. For the finest
resolutions involved, it is clear that one must sample areas of a mirror rather than measure its
entire area, at least for LST size mirrors. We will therefore not recommend pursuit of any
specific measurement technique, except to point out that some of the tests, such as the Lyot test,
are readily adapted to the type of experimental setup used for the center of curvature scatter
experiment. These might therefore be considered to be logical companion experiments.

We feel that three aspects should be stressed in future measurements programs. First,
the spatial resolution range should be expanded to include the domain between figure error and
surface microstructure. In LST terms, this covers the range from perhaps 15 centimeters down
to well below 1 millimeter. Second, Fourier transforms of the surface height distributions should
be performed so that spatial frequency distributions can be measured. Third, programs which
coordinate scatter measurements with surface irregularity measurements and rms deviation
calculations should make sure that the spatial frequency bandpass on the surface measurements
include only those spatial frequencies appropriate to the range of angles over which scatter
coefficients are being measured.
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Appendix A
TRANSLATION OF SCHWESINGER’S PAPER

The following is a translation from German of the article “Illuminance Distribution in the
Diffraction Image of Telescope Mirrors with Random Surface Irregularities,” by G. Schwesinger,
from OPTIK, vol. 34, 1972,
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ILLUMINANCE DISTRIBUTION IN THE DIFFRACTION IMAGE OF
TELESCOPE MIRRORS WITH RANDOM SURFACE IRREGULARITIES*

by G. SCHWESINGER
CARL ZEISS, OBERKOCHEN
Translated by Serge Kunica and William B. Wetherell
” ABSTRACT

In the literature, the possibility has been discussed of
achieving diffraction limited performence even with large tele-
scope mirrors and despite atmospheric scintillation. The present
article investigates whether certain assumptions made in this
connection are really permissible. In particular, it is con-
cerned with the problem of suitable correlation or covariance
functions for describing random wave departures by statistical
surface errors. It is shown that the surface undulations of
actually fabricated mirrors are characterized by correlation
functions strongly departing from the published assumptions.
This leads to a different distribution of illuminance 1n the
point image. For practical application in instrument design,
values are computed for the encircled energy. Some arguments
also indicate a different_shape for the covariance functions
associated with scintillation effects.

1. INTRODUCTION

Wavefronts having random statistical variations in amplitude and
phase are examined in the theory of wave propagation in the turbulent
atmosphere. In recent years, meny articles have appeared which are
addressed to this problem, and which also deal with the difficult question
reguarding the form of the correlation function or covariance function of
these statistical variations. The knowledge of these functions is impor-
tant, among other things, for the determination of the illuminance dis-
tribution in the diffraction images formed by lenses and mirrors. Chernovl
was the first to deal with these questions in general terms, apparently.
Schefflerz’3 has built upon Chernov's analysis and theoretical results in
an attempt to show that it should be possible, under certain postulated
conditions, to drive the optical performance of large telescopes, as
represented by the effective star-disk image diameter, up to nearly the
limit set by diffraction, even when taking into consideration the image

degradation due to atmospheric scintillation. This would require the

* This article first appeared in OPTIK, vol. 3k, pp 553-572, 1972.

The research upon which this article is based was part of a technology
study funded by the Federal Ministry for Education and Science.
Responsibility for its contents lies entirely with the author.
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optical surface to meet surface irregularity tolerances which have not yet
quite been realized, at least not in very large instruments. The practical
application of the technique would therefore not be conceivable without
the dedicated effort of the instrument manufacturers to build a mirror
which is substantially better than has ever been built. If one realizes
that the present state-of-the-art is attained only with considerable
difficulties and enormous fabrication effort, one can imagine that the
required accuracy will necessitate considerable advances in related
technology, and large amounts of money.

The latter concern should by no means be taken to have been the
principal reason for voicing objections to Scheffler's results, however.
In the main, the justification for the doubts expressed above was based on
observational astronomy, which, until recently, has given no valid
indication that diffraction limited imagery is attainable, even with the
best of seeing conditions, i.e., an effective star-disk diameter of 0.3
arc seconds or less. (Various reasons have been advanced for this.)
However, such objections would only become valid if the theory were itself
simultaneously disproved, because otherwise the seemingly irrefutable
argument that such a precision mirror as is required by Scheffler does not
exist, or can exist only as the rarest of exceptions, may be challenged.
One earlier observation which has been reported could possibly be taken
as an example of such an exception. According to this report, an 82-inch
telescope was used under the best seeing conditions to resolve a double
star whose components are separated by only 0.10 arc second. This report
is cited here without comment, to illustrate that where so fundamental a
question is concerned, considerable differences of opinion exist.

The difficulty of the problem is further increased, owing to the fact
that two image degrading effects, atmospheric scintillation and fabrica-
tion errors of the telescope mirror, work in concert: therefore, both must
be accounted for simultaneously by one general theory, if conclusions are
to be drawn with certainty reguarding their optical effects. The work of
Scheffler should have been a point of departure for this, in that it
attempted to treat both error sources through the same statistical theory,
and to draw quantitative conclusions. A statistical theory lends itself
readily to the treatment of scintillation, particularly since in most

instances the effects of scintillation are recorded as a temporal average.
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The analysis of irregularities in the mirror surfaces on a statistical
basis also offers a considerable advantage, since one can normally assume
that a carefully executed fabrication process will greatly reduce or com-
pletely eliminate systematic figure errors such as zonal aberrations,
astigmatism, etc., so that in the end there remains a wavefront with small
irregular deviations, whose configuration is not easily described analyti-
cally, and whose effect on the diffraction image depends on the coinciden-
ces of a given case. With a statiétical treatment, however, one abstracts
from these coincides and ascertains expectation values, which have a

more general significance, and which allow fundamental questions to be
answered. It is evident, however, that when evaluating image quality for
a real system, measuring the actual surface irregularities remains
desirable,

The scope of the present study is to explore how random mirror errors
can be analyzed from a statistical viewpoint, when one discards the
special simplifying assumptions whiéh Scheffler has used in order to make
the problem more easily manageable mathematically. An assessment will
therefore be made as to whether one or another of these quite plausible
assumptions has not led to questionable results with reguard to the

necessary surface quality of the mirrors. The question as to whether

Scheffler's equation for the assessment of scintillation is admissible or
not will be treated as a side issue. In oral discussions, it was variously
surmised that the theory cannot be satisfied in some reguards: however,

that lacks final clarification.
2. THE SIGNIFICANT RESULTS OF SCHEFFLER'S TREATMENT

To begin with, we will review briefly the main steps in the mathema-
tical analysis used by Scheffler, which originated with Chernov.l

A telescope of focal length F, and having a circular pupil, is
assumed. Points in the pupil are represented by the coordinates (yz,zz),
defined so that their origin lies on the optical axis. The complex ampli-
tude function due to a point source at infinity, located on the optical
axis, will be evaluated at the paraxial point (y,2) in the focal plane.
This complex amplitude function will be influenced by the aberrations of
the optical system which originate in the random surface deformations of

the primary mirror. These deformations shall be of a statistical nature,



and are so defined that their arithmetic average is zero. The correspond-
ing phase disturbance S(yz,zl) in the pupil is 2k times the height of the
surface deformation, where the wave number k¥ = 2n/), and X is the wave-
length. The variance of the phase disturbance is 02. The complex amplitude
function u at the point (y,2) in the focal plane is given by the well

>

known relationship

(1)

u(y,z) = Jr e’L[S(yJ_,Zl) + (k/F)(yyl + ZZJ)]dy da
A 171
The domain of integration is the pupil area A. A complex constant in
front of the integral sign is immaterial for the problem at hand, and has
therefore been omitted. If u* is the complex conjugate of the integral,
then the irradiance H(y,z) 1s given by the product uu*. Formally, this can
be written

H(y,z) = /] dy,dz, I] dy,da, ei[S(yZ’zl) - S(yZ’ZZ)]
A A

. 2
ez(k/F)[y(yl—yZ) + 2(21'22)] (2)

X
The evaluation of this quadruple integral for the phase deviations §

for a given individual case would yield for this case the corresponding
peint spread function in the image plane. One could, of course, obtain it
more easily from equation (1) by forming the product uu*. Here, however,
we are only interested in the statistical expectation value of this inte-
gral, which is the average over all possible distributions of phase devia-
tions having the same variance 02 and the same waveform characteristics.
The latter is described by a normalized correlation function, which is

defined as follows;

K(Y132,3Ygs2,) = K(r) = <S(y1,zz)5(y2,zg)>/02, (3)

where

r = [(y; - y2)2 + (25 - 22)2]1/2 . (4)

<> signifies the average over the area of the pupil. Since the mean value
of 8 is vanishingly small, the definition (3) is also the normalized
covariance function. With a correlation function of this form, it was

shown previously by Keller,6 and more strictly confirmed by Chernov,l
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that the following relationship is valid:¥

<ei[S(y1,zl) - S(y2,22)]> _ 6-02[1 - K(r)]_ (5)

From this, one obtains as the median irradiance distribution,

— _<2 _ .
Fly,a) = 11 dyjda, I dyyday ¢ U2 K(y12139 25 ] “
A A

« LR/F)lyly, - yy) + 2(z, - 2,)]

This integral cannot be separated into two double integrals, making
its evaluation considerably more difficult.

From this so far rigorous theory, Scheffler derived quantitative
results. For the correlation function, he assumed a Gaussian distribution

function with a correlation length &, thus

2
K(r) e'(r/l) . (1)

Scheffler used this function not only to describe the surface irregu-
larities of the mirrors, but also the phase variations caused by scintil-
lation. The function K(r) of equation (7) has the required endpoint
characteristics that X(0) = 1 and K(») = 0. It is, despite this, unsuit-
able for the problem under consideration, as will be demonstrated in
section 3.

For the purpose of comparison with later numerical results, only
Scheffler's final equations, which were derived from equation (6) with the
aid of some approximations, are presented here. They read as follows,
where R is the radius of the pupll and o is the angular distance of the
point (y,z) from the optical axis,

a = (y2 + 22)1/2/F . (8)
Therefore,

. -2

_ 2 J (kRCl) 2 _ 2

Bla) = 4 | | + (1- ) amis VYV o <1, (0a)

-g2 ‘Jz (kFa)]” -02 2 -(1/4) (kta/o)?
= de Zma | t(1-e )(%/cR)"e ,» 0 >1. (9b)

- d

H(a) is so normslized that for a perfect mirror, (o = 0), the irradiance

* See the Appendix
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Figure 1 Intensity distribution H in the diffraction

image for a Gaussian correlation function with corre-

lation length £ = R/2. The broken curve is from equa-

tion (9), and the solid curve from equations (31),(33).
is 1.0 at the axial point a = 0. Scheffler limits the validity of these
equations to the domain (Q/R)Z << 1, aﬁd considers this assumption consis-
tent with the measured surface irregularities of telescope mirrors. This
assumption will be investigated more closely later. However, a further
question arises in connection with the derivation of equation (9), with
reguard to the validity of several decisive mathematical simplifications
Scheffler introduced in order to solve the integral (6) using the function
K(r) in the form of equation (7). A computational example gives a partial
answer. In figure 1, the broken curve represents the evaluation of equa-
tion (9) for the case o = 1 and &/R = 1/2. The solid curve represents a
considerably more accurate solution to the integrals which was derived
using the method of computation described in section 5. As a criterion of
accuracy, it can be shown that the above technique gives a value of 0.4645
for H(0), as compared to 0.5259 from equation (9). For the special case of
the axial point, the integral will yield an analytically exact solution,
giving a value of 0.4581. Although the assumption that (E/R)Z << 1 is not
completely satisfied, Scheffler's solution follows the basic characteris-

tics quite well, even though it is somewhat optimistic with reguard to the
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sharpness of the energy concentration. For smaller values of (2/R), the
errors will probably be somewhat lower.

From equation (9), which stateérthe core of his theory, Scheffler has
concluded that large reflecting optics having random surface irregulari-
ties can, under certain circumstances, achieve a high definition image
approaching the angular resolution possible with perfect opties, when
observing through the turbulent atmosphere. The smaller the correlation
length & and the variance o2 of the surface deviations, the greater the
achievable resolution. Scheffler estimates that the value of & should be
less than 1/5th to 1/10th of the pupil radius R, and that the value of ¢
for the combination of both sources of phase disturbances should probably
be less than 1. In actuality, as is shown by equation (9), the fraction of
energy represented by the second term is distributed very evenly because
of the small value of 22 in the exponential and in the factor in front of
the exponential. In the viecinity of the optical axis, therefore, the re-
duction in intensity is due entire1y7£o the factor exp (-02) by which the
perfect lens diffraction pattern is multiplied. When one Judges only in
terms of a resolution criterion such as Rayleigh's criterion, this diminu-
tion in intensity will not result in a reduction in resolution.

The significance of this situation can be assessed approximately by
inspecting integral (6) without resorting to calculations. When X(r) falls
rapidly to zero at small radii, then the first term in the integrand is of
almost constant value exp (-g2), disreguarding the effects of the area
elements, which correlate with each other only for extremely small values
of r. The number of occurrencesng_§géﬁ correllations over very short dis-
tances is, however, very small compared to the number of remaining cases.
At both ends of the range 0 < r < &R, the number of occurrences of corre-
lative connections reduces to zero (see section 3.) One can state, under
these presumed conditions, that in the vieinity of the optical axis, at
least, H is approximated by the aberration free diffraction pattern, as
reduced by the factor exp (-02), since the aberration free pattern is
governed by the second term of the integrand. It can further be expected
that the missing energy will be found in a broader overlay. Conversely,

one can therefore state that the correlation functions which fall off less



steeply than surmised above, or which show significant variations over a
significant portion of the r-domain, can so modify the condition of H that
Scheffler's conclusions are no longer permissible. This question shall now
be pursued.
3. THE SURFACE IRREGULARITY STRUCTURE OF ACTUALLY FABRICATED TELESCOPE

MIRRORS

The correlation function defined by equation (3) can be determined

numerically, if the surface irregularities of the mirror in question are
well enough known. One can then divide the pupil into the finest possible
matrix of M area elements, e.g., in equal sized squares, and perform the
summation of the product S(yl,zz)S(yZ,z ) over all ;he area elements whose
centroids are separated by between r - EAP and r + Eﬂr. Let Pe(r) be such
a partial summation for the mean separation r with an incremental width
Ar = €. Let the associated number of individual terms in the summation
PE(P) be ns(r). The gquotient Pe/n€ represents the average value
<S(y1,zz)5(y2,z2)>. The correlation value to be formed in correspondence

with equation (3) thus becomes

Pe(r) ne(O) P (r)
K (r) = = . = . (10)
a’n _(r) n (r) P _(0)
€ £ €

In figure 2, correlation functions computed by this process are shown
for three actual telescope mirrors.¥* Unfortunately, reliable numerical
data about the surface irregularities of large telescope mirrors is very
seldom available, and is not usually accurate enough to allow structural
peculiarities to be assessed in detall. As a case in point, consider the
well known article on the surface figure accuracy of the Lick I20-inch
mirror.7 Scheffler inferred from the surface contour map published in that
article that his postulated value of R/3 for the correlation length 2 of
equation (7) is compatible with the surface irregularity structure of the
Lick mirror. Figure 2 shows, however, that the actual correlation function

of the Lick mirror is not even approximately Gaussian. The most prominent

* Contrary to appearences, the slope of these curves is zero at r = 0. As
Chernov has noted, this is always valid, if the variable quantity to be
described, in this case the surface irregularities, is free of disconti-

nuities.
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Figure 2 Correlation functions of the surface irregularities
of three actually fabricated telescope mirrors.

difference is the pronounced oscillation, which extends over a wide range
of r.

Similar oscillations are exhibited by the correlation functions of
two newer mirrors of medium size which have been finished by the firm of
Carl Zeiss, Oberkochen. Both have clear apertures of a little over 1.6
meters. Figure 2 shows the condition of the primary mirror of the 60-inch
Ritchey-Chrétien telescope of the Leopold-Figl Cbservatory for Astrophys-
ics in Vienna. The regrettably large dispersion of the data points was due
to the simplified data reduction technique used, but it does not obscure
the existence and approximate amplitude of the oscillations. A more
careful evaluation, using a finer matrix of sample points, eliminates the
large dispersion of velues, as figure 2 shows for the spherical primary
mirror of the Schmidt telescope of E.S.0. In this case, the oscillations
are particularly pronounced.

The fundamental similarity of the correlation curves for these three
mirrors is remarkable, almost astonishing, when one considers the manifold
differences in the manufacturing technology. This is implied in part
through the varying characteristics of thelr surface cross sections.¥* As
you know, the laps for the final polishing of spherical and aspheric

mirror surfaces have somewhat different configurations, and the polishing

* Parabolic, hyperbolic and spherical, respectively. [Translators' note.]
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machines are also adjusted to different kinematic parameters during opera-
tion. Also, the construction of the polishing machine on which the Lick
mirror was finished differs considerably from the configuration of the
machine which was used with both of the other mirrors. Finally, the form
of the Lick mirror substrate, and therefore its elastic behavior, is gquite
different from both of the smaller solid mirrors, since the Lick mirror is
thinner and has a ribbed back surface. The level of accuracy with which
they were figured also differs. For the Lick mirror, ¢ is about 2, and for
the other two mirrors, o is 0.43 and 0.7, respectively.

The similar nature of the correlation curves is probably attributable
to the circumstance that the required optical precision can be attained
only through the use of large area laps, approaching the size of the
mirror, at least during the early stages of fine polishing. In fact, when
one determines the spatial frequency spectrum of the correlation curve,
through Fourier transformation, one finds a distinet maximum at wave-
lengths which are even somewhat longer than the mirror radius. This is in
contradiction to Scheffler's assumptions.

The appearence of negative correlation values, which also contradicts
Scheffler's assumptions, can be explained theoretically. To begin with, it
can be stated that the sum of all the previously mentioned partial sums
PE, which are found by numerical analysis of Ke in the domain 0 < r < 2R,
vanishes, since, according to previous assumptions, S is a statistical
function with a vanishing average value. From this it follows, with

reference to equation (10), that

n (0) =
K (r)n_(r) = = yP (r) = 0. (11)
£ F p(o) °©

If one imagines that the incremental width Ar is made smaller and
smaller by increasing the number of area elements, then in the limit as
M > =, one can define a continuous distribution function, ¢(r), which
indicates the relative frequency with which pairs of area elements can be
found in the plane of the pupil whose mutual separation lies between r and

r + dr. Obviously it follows that
dn(r) = const ¢(r)dr , (12)

and the sum (11) becomes the Iintegral
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{,K(r)dn(r') = 0. , (13)

In the following, r is expressed as a multiple of the pupil radius R. From

(12) and (13), it follows that
£ K(r)é(r)dr = 0 . (1h)

Since ¢(r) is always positive, the possible correlation functions K(r) are
therefore subject to the limiting constraint that in the value domain r,
both positive and negative values of the function must occur.

For the computation of the irradiance distribution H, it is therefore
essential to employ a correlation function which fulfills the constraint
(lh), and which conforms to the characteristics of the empirically
measured function. The frequency distribution ¢(r) required for that pur-
pose falls from a maximum in the middle of the r-domain to zero at both
ends of that domain. One can recognize this intuitively, through the fact
that the separation vector ; may have several degrees of freedom to vary
vector length within the area of the pupil, e.g., displacement parallel to
freedom are restricted for r = 0 and r» = 2, however. In the former case,
rotation is meaningless, while in the latter, no translations are possible
except rotation about the center of the pupil. The relative number of
occurrences ¢(r) of the possible attitude variations of the vectors ;, or
in other words the probability ¢{r)dr that two points within the pupil lie
separated by a distance in the range r to r + dr, can be shown to be as we
state here without proof:

1
Cr { %{Z—P)Z + [ are cos[(rg + p2 - 1)/2rplpde}, r < 1, (15a)
I-r

¢(r)

1
Cr [ are cos[(r2 + 03 - 1)/8rp]) odp r>1. (15b)
r-1

The constant C = 1.2731.

o(r)

The theoretical shape bf7$f;jgfgfshown in figure 3. Additional points
have been introduced representing two of the numerical evaluations of K(»r)
described above, specifically having the number of sample points M = 144
and M = 305, respectively. The number of sample points is obviously still
much too small to achieve a smooth frequency distribution in this

empirical fashion.
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Figure 3 Frequency distribution ¢(r) for the point separa-
tion r with a circular pupil of radius I1.0.

4, CHARACTERISTICS OF THE COVARIANCE FUNCTION FOR ATMOSPHERIC
SCINTILLATION

Since the use of a function K(r) of the form (7) to describe the
mirror surface irregularities is of doubtful validity, the question
remains as to what the covariance functions of the variations in index of
refraction, amplitude and phase due to atmospheric turbulence look like.
The problem of defining these is very difficult and has not as yet been
resolved satisfactorily. Even though the definitive answer to the postula-
ted question must be reserved for later investigation, it is still possi-
ble to say with certainty that the effects of scintillation on image
formation by a telescope cannot be described by a covariance function
which is always positive. When one considers a plane wave of infinite
transverse extent which has been transmitted through the atmosphere, it
can be seen on the basis of elementary considerations that the frequency

distribution ¢(r) is proportional to r. The constraint (1L4) reduces to

[ K(r)rdr = 0 .
0

This constraint was previously used by FriedB as a control for the
covariance function he derived, and he also noted that the appearance of
negative covariance values should be expected, in principle, with two
dimensional distributions. In one special case, that of intensity
scintillations, it has already been shown on the grounds of energy
conservation that the transverse covariance function must have nerative

9

values over a substantisl domain. This has been pointed out by Burke”.
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Shacklo also used the integral constraint cited above. The Gaussian dis-
tribution (7) used by Scheffler does not appertain at all to covariance
functions which satisfy this constraint. The Gaussian Distribution (1)
therefore cannot be used without reservations for the assessment of the
effects of turbulence.

The above considerations for a wavefront of infinite extent must be
modified for image formation in a telescope, since the pupil transmits
only a finite region of the wave.'However, this does not alter the fact
that negative values of the covariance function will appear.

Heidbreder and Mitchell11 havé shown quantitatively that for small
phase disturbances, the principal effect of scintillation is a reduction
in intensity at the center of the diffraction image and a reducticn in
resolution in comparison to the diffraction limit, even if the transverce
linear displacements, i.e., the "dancing" of the stars, could be complete-
ly compensated for through a servo control device. Without compensation of
the directional scintillation, however, the resolution degradation will
increase significantly, as can be seen from the sample calculations in the
cited publication.¥
5. THE EFFECT OF RANDOM SURFACE IRREGULARITIES ON THE DISTRIBUTION

OF IRRADIANCE IN THE DIFFRACTION IMAGE

With the realistic description of the surface irregularity character-
istics of telescope mirrors we have derived, it is possible to deduce
reliable expectation values for the structure of the point spread
function. Even if one has to forgo assessment of the scintillation effects
while its theoretical basis is still uncertain, the prediction and evalu-
ation of the expected image qualipy due to the mirror alone is of the
greatest importance for instrumenﬁiaéfinition, mirror technology and
testing methodology. The following derivation points in this direction.

To begin with, the integral (6) from which we start is rewritten in
polar coordinates, (OJ’¢1)’ f92,¢2) and (p, ¢}, where

yj = Rpj cos ¢j N zj
and there are corresponding formulas for y and z. The radii 075 Py and o

= Rp.sgin ¢.; J=1,2 ,
QJ ¢J d 5

are normalized to the value of R, as was »r. It is also established that

* In this reguard, see also references 10 and 12.
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., = ¢. -~ ¢ j=1:2'

A simple transformation results in

y(yz - y2) + z(zz - 22) R2[pplcos (¢1 - ¢) - pp 408 (4:2 - )]

Il

RZp(plcos ¢1 - p,C08 ¢P)

With the new variables,

= % P2p = KkRa , (16)

the integral assumes the following form, which is independent of ¢, i.e.,

rotationally symmetric:

_ 2n 2n 1 1 2 . _
Gic)=f f f1&7° (1-K(r)] ,itloy cos o, - o, cos o)
0 0 00
x p,podp ,dp ,dd,do, , (17)
where
y = [012 + p22 - 20102 cos (@2 - ¢Z)]1/2 . (18)

This integral generally cannot be solved for an arbitrarily chosen
function K(r). If one realizes that the first exponential in the integrand

can be represented by a polynomial in even powers of », then through

—g2 - u

5O [1 K(r)] _ Z meZm (19)
m=0 ’
the powers of cos (¢2 - @1), which appear because of equation (18), can
be reépresented by the cosine sums of the multiple arguments, and one

obtains H(z) as a sum of partial integrals

= gm gm 11 it({p, cos &, - p, cos &)
Hmns(c) =f f [ [ cos n(¢2—®1) e 1 1 2 2
0 0 00
51 %2

X p, P, dp1d92d®1d¢2 s (20)
where §; = 2(m-g8) -n+ 1, (21)
5, = 2s +n + 1, (22)
n o< om < u, (23)
and 0 < 8 < m=-n. (ok)

The latter integrals can be solved now utilizing the integral repre-

sentation of the Bessel function Jn(x), which is

am ind 1x cos @ ”n
[ e e dp = 2an 1 Jn(:r) . (25)

0
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Both integrations with respect to ¢1 and ¢2 lead to

2n 2n , . ,
Fa [1 REACP LIV l_e-zn(¢2-¢1)} Gitlpg cos & - 0,y cO8 %) g5 4o
0 0 2 2 172

2 43 . .~ _ —N _ . e
onl[{ Jn(-cpz) Z J_n(cpl) + 1 J_n( cpz) 7z Jn(cpl)]

— 2
= ln Jn(CQl) Jn(coz)

If one changes the integrating varisbles from cpj to vj, then

_ ) 1 8y 1 8
Hﬁns(c) = d4n é Jn(cpj) fq dpz g Jn(cpg) 0q de
42 °C 81, & ®2
T / Jn(vl) v, v, [ Jn(uz) vy vy - (26)
r 172 0 0
In both integrations with respééfmfﬁ”vl and Vg, Use can be made of the
recursion formula -
f 7 Py = g (P (pe1) £ ()P gy (27)
7 n+l n+1 ’
With respect to equations (20), (21) and (22), therefore, one can set
p = &, -n = 2m=n-8)+1, (28)
p'= g5-n = 28+ 1. (29)

Noting that p and p' are odd numbers, p can accordingly be represented by
the number 2N + 1. The successive applications of the recursion formula

(27) yields

n+p _ n+p _ n+p-1
I Jn(v)v dv = Jn”(v)v - (p 1)Jn+2(v)v

b (p-1)(p-8)J_, ,(v)0"P - (p-1) (p-3) (p=5)7,, ,(v)0"*F™
N N+
F ... F (-2)°N! Jn+N+1(v)v . (30)

If one defines the function Q(z) according to

g
Q  (r) = c'm"'p”) / Jn(v)vn+pdv

s 0
_ 1 -1 (p-1) (p=-3)
= E'Jﬁ+1(c) - Ezg'Jn+2(C) + —EL—Ege——- Jh+3(C)
' i
(p-1) (p=3) (p=5) (-2)"N!
- = I q(t) + o # _—cN+1 I ime1(8)s (31)
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and a related function @'(z), in which p' replaces p and N' = g replaces

N, then one obtains, because of the relationships (28) and (29),

U

Q () a (v = ¢ FmY ?Jn(v)vn’Lpdv ; RO,
and 0 0 =
2 o(t) = 4v2 @ () g (t) . (32) -
H shall be normalized such that it will have a value of 1.0 on axis ié
for an aberration-free image. Withm=n=s8 =0, p=p' =1, (32) -
becomes =
Hypp(o) = 4n? Q?OO(U = nz[ZJZ(C)/C}g . -
The required normalization__ﬁooom) = ] is thus obtained by elimi- ?
nating the factor m2. Finally, the total irradiance H(z) is given as a sum
of all the individual contributions of the polynomial set Zz
-
_ y m m=n
H(g) = 4m£0 nEO SEO ba @ (¢ Q& (t). (33) g
a denotes a coefficient which results from a binomial development of
r2m and the transformation of the powers of the cosine terms into %?
trigonometric sums.
We forgo presentation of the complete equation for the triple summa- %%
tion, which would be quite involved, since the number of terms increases
rapidly with u. On the other hand, a value of u of about € to 8 is needed zg
in approximating an oscillating correlation curve of the form shown in -
figure 2. Figure L shows the results of a polynomial representation with =
u = 8, which should reproduce the average characteristics of the described %%
correlation curves. The curve X(r) shown in figure 4 was obtained by .
inverting the approximation to the exponential (19), for the case¥ %%
g = 0.241 = 0.7540. This function, furthermore, satisfies the constraint
of equation (1k4). For other values of o, the polynomial coefficients bm %% %
vary accordingly, and it can be seen that the correlation curves deter-
mined by inverting equation (19) are no longer exactly identical. On the =
whole, the quality of the polynomial fit decreases with increasing values a
of a. -
# This corresponds to the smallest value treated in reference 2. =
%?
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Figure 4 Polynomial approximation of a correlation func-
tion of the type shown in figure 2.

It can be recognised from figure L4 that difficulties are encountered
in reproducing the beginning portion of the empirical curve, with the
rapid variation of curvature and steep slope in the vicinity of r = 0,
this means that a many-termed polynomial is required. Similarly, the short
oscillations at the end of the curve probably do not entirely correspond
with reality; however, this region cannot be evaluated experimentally with
any degree of reliability. Neither of the identified deviations are con-
sidered to be of grave significance, since in the regions of poor approxi-
mation,the frequency distribution ¢(r), as has been shown, falls to zero,
so that the value of the integral H(z) is not seriously falsified. This is
further supported by the accuraé&iégmparison in connection with figure 1,
which 1s based on similar circumstances, although in somewhat milder form.

Irradiance distributions were calculsted for various values of o,
using correlation functions of the described forms. The results are
presented in figures 5 - 9. For comparison, the results calculated from
equations (7) and (9) of Scheffler are presented for the value R/% = 5,
which Sheffler used in his own work, along with R/2 = 10. The latter value
would have led to even greater differences from the new results. Since for
0 = 0 the results are identical, the discrepancies become increasingly
more pronounced as the value of o increases. To be sure, the correlation
function illustrated in figure U4 still leads to an irradiance distribution

with characteristies which are typical of random wavefronts, as has been
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Figures 5-9 Normalized irradiance distribution H in the
diffraction image. Solid curves are for a correlation
function of the form of figure 4. Dashed curves correspond
to equation (9), with £ = R/S.
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published frequently, i.e., an attenuated diffraction distribution
and a superimposed flat supplementary distribution. However, this charac-
teristic is now clearly less pronounced. There is found, namely, a flat-
tening of the diffraction core, while of the diffraction minima, essen-
tially only an indication of therfirst minimum remains. Beyond the weak
secondary maximum, the irradiance drops more rapidly than for the Gaussian
correlation function. There is therefore less energy spread out, which

results in the central maximum remaining higher. The total energy within a

moor
i

== given circle is thus increased, and this is especially important for
photography of stars and related tasks. The effect on the achievable

angular resolution is less clear. A theoretical criterion for the spread

(

of the image, such as the radius g at which the irradiance has dropped to

a given fraction of the maximum value, would indicate a worse angular

(

resolution. However, such a criterion is hardly sufficient, if the maximum

I
I

irradiance at the axis has been reduced as far below that of the aberra-

(T

tion free image as in the cases with larger values of g.

For evaluating the quality of telescope mirrors, it has proven useful

1

to consider the percentage fraction of the energy which is concentrated by
the mirror inside a circular area with a specified radius %. The specifi-

cation of requirements on the instrument manufacturer, then, will usually

(e

have prescribed the encircled energy values for various radii which cor-

respond to specified angular diameters of star images. This leads to an

0l

(e
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Figure 10 Encircled energy L in the diffraction image for
the correlation function of figure L.

overspecification, however, since if one can assume, as has been shown
here, that the empirical correlation functions of the surface irregulari-
ties lead oﬂly to slight differences, then the functional development of
the average expectation value of the encircled energy Lfz) as a function
of ¢ is already fixed through the single parameter o. It would therefore
be more realistic to orient specifications of the kind mentioned above
toward well-founded encircled energy curves. Such curves are shown in
figureHlO, and are the results of integration by zones of the irradiance
curves given earlier. These encirecled energy curves should be especially
useful for practical applications. They show a bulge in the region where
otherwise the undisturbed first diffraction minimum would occur; the bulge
is especially pronounced for small values of ¢, and indicates that there
is already a significant image degradation. Since the encircled energy
reqﬁi}ements established for astronomical purposes start with lower limits
which are never under 50 percent, but on the contrary usually lie above
that value, this bulge is of grave significance with reguard to quality

requirements.

A-22

L

L

(Il

&l |

gLl



Comparison of the curves L(z) with results which have been published
for the familiar axially symmetric aberrations shows clear differences not
only in the general shape of the curves, but also in the average quality
of the encircled energy. Using the same parametric values of ¢ for compar-

15

ison, the results of Fockelh and Barskat for zonal spherical sberration,
and of the latter also for simple spherical aberration, show more favor-
able encircled energy values, while Wolf's investigation16 of the devia-
tion from best focus, viewed roughly in the average, show a tendency to
somevhat degraded encircled energy with increasing o. With such compari-
sons, however, it should be noted that with large values of ¢, the curves
L(rz) calculated here become somewhat uncertain, due to the reduced quality
of the polynomial fit of equation (19). Presumably the correct values of L
are somewhat lower, especially in the upper region. Other interesting
results and oppertunities for comparison are proferred by the work of
Barakat,l7 Shannon18 and Tschunkolg. The latter work, though, treats
artificially generated surface irregularities, which bear no direct

comparison to those postulated here.

At this point, I would like to express my appreciation to Mr. K. P.
Zimmer and Mr. E. D. Knohl for the development of the computer programs
and for performing the computations. I would also like to thank Mr. C. H.

Kihne and Dr. R. Wilson for their useful discussions.
APPENDIX: WITH REGARD TO THE VALIDITY OF EQUATION (5)

The relationship (5) is rigorously valid only for a Gaussian distri-
bution of the phase disturbance S. For other distributions it represents a
very good approximation, so long as the deviations from a Gaussian distri-
bution are not large. Even gross deviations produce only moderate errors,
as is shown by the example of a symmetrical triangular distribution
(Simpson's distribution) for the same variance 02. In this case, the
right side of equation (5) is replaced by

1 - cos {c[12(1 - K)]J/z}

602(1 - K)

The following table shows that despite the drastic difference between
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the two distributions, the average functions under consideration diverge

noticeably only for large values of o2(1 - X).

._l
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11.
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13.
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15.
16.
17.
18.

19.
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TABLE
THE AVERAGE VALUES OF THE COINCIDENCE MAGNITUDE

exp {ilS(y,2,) - S(yg,zgﬂ}

02(1 - K) 0.25 0.50 1. 00 1. 50

Gaussian Distribution 0.77880 0.60653 0.36788 0.22313
Triangular distribution 0.77370 0.58997 0.32474 0.16141
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Appendix B
SURFACE ROUGHNESS MEASUREMENTS TECHNIQUES

- This memorandum was prepared by Dr, James C. Wyant of the University of Arizona
Optical Sciences Center under a consulting agreement to Itek for NASA contract No, NAS8-29949.
The latter is the LST phase B study, and Dr, Wyant’s memo was written in connection with the
S.R. & T. task concerning specific surface measurement techniques. Since it also serves the
purposes of the present study, we include a copy here. Both contracts are with the same customer,
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Memo to: W. Wetherell
From: J. C. Wyant

Subject: Surface Roughneseréasﬁreﬁent Techniques

Date: October 27, 1974

In this memo I describe and compare eight surface roughness measurement
techniques. The eight tecﬁniqﬁégrare: 1. LUPI, 2. A.C. LUPI, 3. Multiple
beam interferometer, 4. Fringes of equal chromatic order (FECO), 5. Lyot
test (sometimes called Zernike phase contrast test), 6. Central dark
ground method (CDGM), 7. A. C. Fizeau interferometer (the system described
by Jay Eastman at the last OSA meeting), and 8. A. C. differential
interferometers. As I understand, you are interested in surface roughness
amplitudes and periods which vary by two orders of magnitude from 500 A°
P-V to 5 A® P-V and 100 mm to about 1 mm, respectively. I believe there is
more than one method available whichrﬁas the capability of making these
measuremznts. The measurement problem is simplified somewhat since
you are interested mostly in the surface statistics rather than a detailed
surface contour map. My recommendations are given in the conclusion

section at the end of this memo.

PRECEDING PAGE BLANK NOT FILMED
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LUPI

Since the LUPI is well known to you I will not go into its operation,
and I will only comment on its surface roughness amplitude and frequency
measurement capability.

I believe that under good conditions, namely vibration isolation
and probably in a vacuum tank, a LUPI has a P-V surface measurement
capability of approximately 200 AO, which corresponds to approximately
1/15 fringe. Samples can be taken either along a line perpendicular
to the fringes, or preferably along one fringe. The reason it is prefered
that samples be taken along a fringe is that if data is taken along
a line perpendicular to the fringes only one dimensional resolution
is being utilized for measuring both sample position and surface contour,
while if data is taken along a fringe the positional resolution is in
the direction of the fringe and surface contour is obtained from resolution

perpendicular to the fringe. Since two dimensional resolution is utilized,

in practice more sample points can be obtained across the sample. Naturally

the average distance between fringes has to be measured in order to
calculate the surface height variations. I suspect that from 100 up to
perhaps 500 data points could be taken along a fringe.

In order to obtain the 200 A® surface measurement capability the
wavefront deformation introduced by the interferometer must be subtracted
by using a technique such as the one developed at Itek consisting of
analyzing data obtained by rotating and translating the surface under test.

The 200 Ao P-V surface measurement capability is probably determined

K| Rt ® Wy @ #0001

[

i

i
i

L Y [ L (0TI U



]

by the vibrations in the system. 1In the testing of a short radius of
curvature mirror it may be possible to reduce the 200 A® P-V error by a
factor of two. One method of increasing the measurement accuracy and

perhaps also the number of samples would be to use an AC LUPI.



AC LUPI
%%
The basic difference between a conventional interferometer and an =
AC or heterodyne interferometer is that in an AC interferometer the two -
interfering beams have slightly different optical frequencies. Possible Zg
-
methods of obtaining two coherent beams having different optical frequencies B
are illustrated in Figure 1 and include reflecting one of the beams off ;;
a moving mirror, transmitting a beam twice thru a rotating % wave plate =
(or once thru a rotating ’ wave plate), using a Zeeman laser which emits =
two beams having different frequencies, or using a moving grating or a ;é
Bragg cell which doppler shifts the light in the diffracted order. o
Regardless of how the two beams having different optical frequencies are %;
produced, when the two beams are interfered, the irradiance of the =
resulting interferogram varies sinusoidally with time. By using either =
an array of detectors in the interference plane, or one stationary detector éé
and one scanning detector, electronic phase measuring techniques can be o
used to measure the relative phase differences in the interferogram plane. %é
This technique offers a major improvement over a conventional LUPI in that -
better phase measurement accuracy can be obtained and additionally many -
measurements can be taken in a short period of time and processed é%
electronically to average out the effect of vibration and turbulence
and thus increase the accuracy of the measurement even in a less than ideal -
environment. An additionally good feature is that surface departure
information is no longer extracted from the fringe deviation from straightness.
Thus, if N samples are to be taken across a pupil, the scanner used to Ei
move the detector around needs to have only N one-dimensional resolution B
points. =
B-6 -
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Many methods of making an AC LUPI exist. One possible method is
shown in Figure 2. 1In this setup the light exiting a conventional LUPI
is incident upon a Bragg cell. The angle between the reference beam and

the test beam is selected such that the zero order of the test beam and

the first order of the reference beam leave the Bragg cell at the same angle.

Since the zero order of the test beam is not ddppler shifted and the first
diffracted order of the reference beam is doppler shifted an amount f,
the drive frequency of the Bragg cell, the two interfering beams have
different optical frequencies and electronic phase detection can be used.
One of the detectors would be stationary and the second detector would
scan the image of the test surface in the desired fashion. Other beams
leave the Bragg cell, but they all leave at an angle different from
thedesired two beams and can be eliminated by placing a small aperture
in the appropriate position in the focal plane of the lens after the Bragg
cell such that the aperture transmits only the two beams of interest. The
diverger in the LUPI could of course be removed for the testing of
plane mirrors.

I think that with an AC LUPI it would be possible to obtain up to
500 samples across an aperture and a measurement accuracy of at least

50 Ao, probably even better. To obtain these results the errors in the

interferometer must first be calibrated and subtracted from the test results.
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Figure 2. One possible AC LUPI.



Multiple Beam Interferomectry

Multiple beam interferometry is characterized by its very sharp =
fringes. If fringe position data is obtained with the naked eye I think -
that a multiple beam interferometer has a' distinct advantage over a two g
beam interferometer. However, if a more sophisticated' way of measuring —
fringe position, such as a scanning microdensitometer, is used, I do not =
believe the sharp fringes obtained using a multiple beam interferometer =
offer any appreciable advantage. This is partially borne out by the “
fact that while Perkin Elmer uses multiple beam iﬁferferometry almost g
exclusively, and Itek uses two beam interferometry, both companies appear e
to have essentially the same measurement accuracy. Multiple beam =
interferometry has the disadvantage that the surfaces under test must be coated. Z:

Two types of multiple beam interferometers are the Fizeau and the -
P.E. SWIM.1 I think the SWIM and LUPI give similar accuracy, while the %
Fizeau, whether multiple beam or not, might give better results by =
a factor of 2 or more since effects of vibration and turbulence are -
eliminated. The Fizeau does offer the problem that surfaces up to =

-
only 12 inches or so in diameter can be measured. B
®
%
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FECO Test

A FECO interferometer is basically a multiple beam interferometer
in which the test sample is focused on the entrance slit of a spectrograph.
The output of the spectrograph gives the surface profile. A schematic
diagram of a FECO interferometer is shown in Figure 3. A white light
source from a point source Z is collimated by lens L, and reflected
to the reference surface and the test surface (i.e. multiple beam interferometer,
I) by beam splitter B. Both the reference surface and the test surface
are coated to have a reflectance of about 90%. The light reflected
from the reference and test surfaces passes thru the beam splitter, and
lens L2 focuses an image of I on entrance slit S of a spectrograph.
The white light is dispersed by the spectrograph and a spectrum containing
interference fringes is formed in the focal plane F which is conjugate
to I. Each fringe shown in F gives the profile of a line, or actually
a slit, of the difference between the test piece and the reference
surface. The profile line in the output of the spectrograph can be
converted to the departure of the test surface from the reference surface
by using the technique described in reference 2.

There is one major differencc between a Fizeau multiple beam interferomcter
and a FECO interferometer. The difference being that in a multiple
beam interferometer each fringe is a contour line, i.e. the loci of points
for which the difference between the test surface and the reference

surface is a constant number of wavelengths and the only way information

can be obtained about the surfaces for points between fringes in a
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multiple beam interferogram is to move the fringes around by either
Ehanging the distance between the,test surface and the reference surface
or by changing the wavelengtﬁ;ﬁiag;ﬁ the FECO interferometer the portion
. of the surface for which the profile is obtained can be easily selected,
- - i.e. the profile is obtained for the portion of the surface which is

- focused on the spectrograph slit.

As you know, the Bennetts have been using the FECO interferometer
for measuring surface roughness and they described some of their work at
— the latest OSA meeting. I am sorry that at the time I am writing this
memo I do not have access to their latest work. They are sending me
information, but I have not received it yet.

As Jean Bennett described at the last OSA meeting, they have developed

with a lateral resolution limit of about 2 microns. Wavelengths are

{l

measured at 512 equally spaced points along the length of an interference
fringe which corresponds to a total distance of 1 mm on the test surface.
They appear to be ahead of everyone else on‘their measurement techniqueél
— The Bennetts can look at a total sample distance of only 1 mm since

they want a lateral resolution of only a few microns. Since you do not

have this lateral resolution requirement you can look at much larger

samples up to 1, 10, or perhaps even 30 cm. You would simply set up a

[

normal multiple beam interferometer using a small white light source

and image the sample onto the entrance slit of the spectrograph.

My main complaint about the FECO test is that the sample must be coated.

.
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Perhaps for the spatial frequencies you are interested in this is not
a critical factor, but I am not 100% convinced that at the small amplitude

variations it can always be assumed that the coating follows the surface

sufficiently closely.
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Lyot Test and Central Dark Ground Method

Both the Lyot test (often called Zernike test) and the central dark
ground method provide means of measuring the surface roughness of polished
surfaces. The Lyot test gives a linear relationship between irradiance and
height variation of the surface under test. The central dark ground
method (CDGM), in which a small stop is used to block the zero order
spectral component, can give both the point by point surface height
variations and with a single measurement the rms surface height variations.
The Lyot test and the CDGM test;égérsimilar and can be analyzed as follows:

Let the amplitude of the light reflected by the test surface be given by

tya)=t, expLifpxp]. @

If Z(x,y) is the height variations of the surface being looked at in

reflection, then

W?;y) 22%[22(79/%)‘]' (2

In the following it is assumed that the magnification is unity and
that the imaging optics is large enough to collect all the diffracted rays
that carry any appreciable energy.

In the Lyot test the light reflected from the clement under test is
brought to focus and a mask is placed at the focus as shown in Figure 4.
The mask which covers the central portion of the Airy disk transmits an
amount a of the undiffracted light and retards the phase of the undiffracted

light by either % wave (positive phase contrast) or 3/4 wave (negative
g b4 p _phas

phase contrast) rclative to thc'pﬁééc retardation of the diffracted light.
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Figure 4. Surface roughness measurement by Lyot test.
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the image plane is given by

. 2.2
T(r,9)=[epipy) -1 +a exp(: %) | 2,

| ‘ 2
=[2 +a*- 2cr< flr ) ¥22 2m ¢izg) .

2] a?+2a() (19’?)] @

The t2 in the above equatlon corresponds to the strong wave component

(3)

that is reflected from the sample without change, while the a exp(iW/2)
is the portion of this undiffracted light that is transmitted with a
90° phase change.

As long as #<<a, the observed irradiance is linearly related to the

height variations of the surface. -If I=I_ when $=0, then

- or

.
Pl [ 2 1] 5 ©

So as long as a, the zero order amplitude transmission of the mask is
known, @4(x,y) can be determined. . -

If ghﬁ*‘a there is not a linear relationship between observed irradiance

and the height variations of the surface. In this case the relationship between

¢ and I can in most cases of interest be approximated as
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Table I shows different values of irradiance ratios I(x,y)/I0
obtained for different values of ¢ and a. Eq. (7) was used for all the
calculations. For the irradiance ratios below the horizontal lines in the

table there is a linear relationship between irradiance and height variations

and Eq(5) could have been used for the calculations. The relationship between

a and optical density D shown in the table is D= log (1/a2].

It should be noted that in Figure 4 the light diffracted at the
edge of the test piece was eliminatedey placing at the image of the
test piece an aperture smaller than the image. From the analysis you
recently performed it appears that thié mask is not needed if the test
sample is illuminated with a suitably apodized wavefront, instead of a
wavefront having uniform intensity as is generally used.

Recently a mddifiéation in the Lyétrhask was introduced which extends
the linear operating range by about a factor of 3 or 4.3 In the modified
Lyot test the undifffacféd light is phase shifted by 45° and is unattenuated,
while the diffracted light is atteﬁuatéd by a factor of\r;_. Under these

conditions the irradiance in the image plane is given by
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2
I(?é,ﬁ) '=[ (expi €lx ) —l)/yz texp i '?r/4/ L2

32/* Sin @(Z/g),] ?faz (9)

Then

T (x4

(o4

= [tsinflyy)x 1+0(xg) 4

Although the modified Lyot test has a slightly larger linear operating
range than the regular Lyot test, the][E- amplitude attenuation of the
diffracted light means that a given change in the surface height variations
changes the irradiance ratio by only half as much as in the case of the
unattenuated regular Lyot test.

The CDGM test is the same as the Lyot test except now the mask
transmits none of the undiffracted light. Thus, the irradiance in the

image plane is given by

2 LS
T =] exp i0Gy) -] 2,
::2-2-2 Q{Cp(g?y)—]fat
/%,’“éa Cf('}f/ﬂ) (11)
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The observed irradiance is no longer linearly relatéd to the height
variations of the surface, however there is a known relationship. If the mask
is removed the irradiance, Io, in the image plane is tg. The ratio of
irradiance with mask to irradiance without mask is given by

I(x,y) with mask _ -
I without mask B (x>y) (12)

So by measuring I(x,y), one obtains #(x,y). Table II gives irradiance
ratios as a function of Z(x,y) and 4(x,y).

Instead of measuring the height variations of the sample point by
point, the CDGM test can be used to measure the rms height variation, Z(x,y).

The total amount of flux, F, in the image plane is given by

F = jI (x,y) dx dy

fti $2(x,y) dx dy (13)

If the mask is removed the flux in the image plane is ){tg dx dy. The

ratio of flux with mask to flux without mask is

F with mask  _ Jéﬁ 42 (x,y) dx dy
F without mask 112 dx dy
(o]

= (rps) C(14)

To obtain an accurate measurement of ¢ it is necessary to block

Tms
out the light diffracted by the edge of the sample. This is easily
accomplished by reimaging the sample onto an aperture smaller than the
image of the sample, as shown in Figure 5. Your recent results indicate

that if the sample is illuminated with an appropriately apodized beam

essentially the same results are obtained without the mask.
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Table II which gave the irradiance ratios as a function of Z(x,y)

also gives the flux ratios as a function of Z__ . For example, if Z
Tms ™ms

is 50 Ao, then the flux ratios for a reflection test would be 0.016 i.e., 1.6%.

of the light is diffracted (scattered) out of the direct beam. The
ratios are small for small rms surface variations and would be hard
to measure in practice. However, in a sense, this is good. The flux
ratio is a measure of the Strehl ratio. For small surface errors the
Strehl ratio differs from the ideal value of unity by an amount equal

to U‘rms)z'
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TABLE II: TRRADTIANCE RATIOS FOR CDGM TEST

Surface Height ¢ (x,y) for reflection CDGM Test
variation Z(x,y) ' off surface Irradiance Rario
200 A° 0.5 0.25
100 A° 0.25 0.063
50 A° 0.125 0.016
25 A° 0.0625 0.0036
10 A° 0.025 : 0.0006
5 A° 0.0125 0.0002
1 A° 0.0025 : 0.000006

82 (x,y)

IRRADIANCE WITH CDGM MASK

Irradiance Ratio

IRRADIANCE WITHOUT CDGM MASK
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Figure 5. Surface roughness measurement by central dark ground method.
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AC Fizeau Interferometer

At the last OSA meeting Jay Eastman described a scanning Fizeau
interferometer. Figure 6 shows one possible configuration. The instrument
is similar to conventional Fizeau interferometers except the reference
surface is oscillated by a piezoelectric transducer, which causes the light
reflected by the reference surface to be doppler shifted in frequency.
Therefore, the two interfering beams have different optical frequency
and the irradiance of the interferogram varies sinusoidally with time.
Hence, AC heterodyne phase detection can be used in the manner described
in the section above on the AC LUPI. In the instrument built by Eastman
tms surface roughness of 20 A% could be measured for a 1 mm strip of the
surface. By sacraficing lateral resolution, the sample size could probably
be increased to 1 cm. For larger surfaces it might be hard to control
the oscillation of the reference surface.

The surfaces would not need to be coated. The light source could
be selected such that the coherence length is short enough that the only
interference present would be between light reflected by one surface of
the reference piece and light reflected by the test surface. Light reflected
by other surfaces would not effect the results.

The AC Fizeau has the advantage over the AC LUPI that sctup vibration
and turbulence would produce much less effect, just as in a conventional
Fizeau. The AC Fizeau does have the problem that only relatively small
samples could be tested.

My main complaint about the AC Fizcau interferometer is the problem in
oscillating the reference surface without distorting its shape. One way of

getting around this problem would be to use an AC differential interferomcter.
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Figure 6. AC Fizeau Interferometer.
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AC Differential Interferometers

The data obtained from a differential interferometer is slightly
different from that obtained from a Fizeau. The AC Fizeau gives the contour
difference between the test surface and the reference surface, while
the AC differential interferémégg;mis a lateral sheaf interferometer and
gives the height difference between points on the test surface separated
the shear distance. If the shggfwés large compared to the largest period
surface structure being 1ooké§%ét; the surface statistics measured by
the two interferometers are essentially the same.

Several types of AC differential interferometers exist. One type
is the AC polarization interferometer shown in Figure 7. In the figure
S is the light source, which would probably be a Hg lamp, L1 is a collimating
lens, and P1 and S1 are a polarizer and Savart plate, respectively.

The Savart plate has the property that an incident ray is sheared in two:
an ordinary ray and an extraordinary ray. Thus, if it is illuminated
with a beam of light, two laterally displaced beams will exit the plate.
The two sheared beams have orthogonal polarization. P1 and S1 can be
eliminated if a slit source is used instead of an extended source.

Pz and S2 are another polarizer and Savart plate. 82 converts the
beam reflected by the sample into two beams laterally displaced a distance
4AS. The two displaced beams have orthogonal polarization. Let one
polarization be in the x direction and the other in the y direction.

Furthermore, let #(x,y) be the phase differeq&e between the two beams.

If Z(x,y) is the height variations of the sample then
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It can be shown that if a % wave plate is placed after the Savart plate
and the slow axis of the plate makes an angle of 45° with respect to the
X axis, the light leaving the 4% wave plate will be linearly polarized
at an angle #(x,y)/2 from the slow axis of the % wave plate. If the
polarizer placed after the % wave plate is rotated at angular frequency

W, the photodetector sees a signal proportional to
cos?] 2wt +@(xp/2]
=L ] I+ 4wt +d’(757)]'

Thus, AC phase detection can be used to measure B(x,y).

A second AC differential interferometer is illustrated in Figure 8
and described more fully in reference 4. In this interferometer both
the shear and modulation are obtained by using two acousto optic Bragg
cells which are driven at different frequencies.

AC differential interferometers show a lot of potential for measuring
surface roughness. The sample would not have to be coated. The back
surface of the sample could have the appropriate shape to throw light
reflected off the back surface out of the interferometer. Almost any
size sample could be tested by placing the required expanding optics
( a diverger for large spherical surfaces, a microscope for small surfaces,
etc) between the shearing device (Savart plate or Bragg cell) and the surface

under test. Although the optics should be good they do not have to be
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unreasonably good since an extended, or at least a slit source, is being
used. The phase measurement is made in a plane conjugate to the sample,
and dug to the source's fiﬁite size, aberrations in the instrument
which occur in a plane different from either the sample plane or a plane
conjugate to the sample plane are smeared across the sample and the
biggest effect is to reduce the lateral resolution capability of the
system. (What I say above can be seen to be true by observing the fact
that dust in interferometers have less effect on test results as the source
size increases.) The above results suggest that turbulence has less
effect on the results for a differential interferometer test than for
a LUPI test.

Perhaps the largest source of error in AC differential interferometers
is produced by non uniform frequency modulation of the output signal. I
do not know how uniform a signal can be produced using a rotating analyzer
to generate the signal. I do know that Bragg cells have shown a uniformity
of at least 1/100 wave with time, but I do not know if the phase gradient
across the diffracted beam is this good (i.e. are the grating planes in

the Bragg cell equally spaced to within 1%).
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Conclusions

The LUPI is probably good for measuring surface variations up to
1/15 fringe or 200A°, Probably a minimum of 100 sample points across
the aperture can be obtained. To obtain these results errors in the
interferometer would have to be subtracted from the test results and
vibration isolation and a vacuum chamber would be required.

An AC LUPI is a good way of improving the measurement accuracy
and perhaps increasing the number of sample points which could be obtained
across the sample. A measurement accuracy of 50 A® or better P-V could
be obtained for perhaps as many as 500 samples across the aperture.

Again to obtain these results errors in the interferometer would have to
be calibrated and subtracted from the test results.

Fizeau multiple beam interferometry could probably yield a P-V
accuracy of 50 to 100 A° for 100 or more sample points across the aperture.
However, the aperture size would be limited to about 12 inches diameter.

A SWIM interferometer could increase the maximum allowable aperture,
however this would increase vibration and turbulence problems which would
reduce the accuracy to a point similar to that obtained using a LUPI.

FECO interferometry has been used extensively by the Bennetts and
its performance for measuring small period structure is known. Probably

5 to 10 A® measurement accuracy can be obtained for 500 sample points

across an aperturc for apertures up to 12 inches diameter. My main complaint

about the FECO test, which is a complaint about multiple beam tests in

general, is that the sample must be coated.
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The Lyot test looks promising for being able to test large diameter
surfages with an accuracy of 5 A® for 500 or so sample points across the
sample. Vibration isolation and a vacuum chamber would probably be
required for testing large diameter surfaces. The sample would not
have to be coated if the second surface was made such as to reflect the
beam out of the system.

The CDGM is interesting only because it can provide the rms surface
structure with a single measurement, however it does not have sufficient
sensitivity for the measurements you want.

An AC Fizeau interferometer would probably give surface roughness
measurements good to 20 A° or better for 500 sample points across the
aperture. The interferometer works well with uncoated surfaces. The
largest problem with the interferometer is that only small pileces, maybe
up to 1 cm diameter, can be tested, I am worried about being able to
oscillate the reference mirror without distorting its shape.

AC differential interferometers appear promising. As long as the
lateral shear is greater than the largest period of surface roughness of
interest, surface statistics should be the same as obtained using a
Fizeau interferometer where two surfaces having similar statistics are
compared. I think § Ao sensitivity can be obtained. Both small and large
surfaces could be tested. Perhaps for the larger pieces vibration isolation
and a vacuum chamber would improve the results. 500 samples could be
obtained across the aperture. Although the interferomcter optics should
be good, if an extended source, or at least a slit source, is used

the interferometer optics would not have to have super quality. The sample
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also does not iieed to be coated.

I think that for the measurements you want, where you do not need
to know exactly where the surface deformation is, but are only concerned
with the statistics, the AC differential interferometer has all the good
characteristics of the AC LUPI, and some better features in that effects
of turbulence, vibration, and optical imperfections in the interferometer
are reduced. In my slightly biased opinion, I think the AC differential
interferometer is the most promising technique for making measurements
across the wide range of amplitude and period of surface structure you
are interested in and could even look at higher frequency structure
than what you are interested in. Even micron type ripple could be

measured by using a microscope to image the sample on the detector plane.
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Appendix C
PERFECT LENS PSF OVERLAYS

“The attached transparencies show the PSF’s for a perfect lens, both obstructed and unob-
structed. The obstructed lens has a central obstruction diameter ratio of 0,324, matching the
A A.T.primary. The other two PSF’s are plotted on a radius scale of 100 and 50 Airy radii,
matching the two scales most commonly used in the text.

These transparencies can be lajr'éafofﬁ top of the figures in Section 4 to show how the PSF
is modified by the form of wavefront error under discussion. Two sets of the overlays are pro-
vided; the reader may wish to cut the individual charts apart for convenience,







